The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.
Immune protection from intracellular pathogens depends on the generation of terminally differentiated effector and of multipotent memory precursor CD8 T cells, which rapidly regenerate effector and memory cells during recurrent infection. The identification of factors and pathways involved in CD8 T cell differentiation is of obvious importance to improve vaccination strategies. Here, we show that mice lacking T cell factor 1 (Tcf-1), a nuclear effector of the canonical Wingless/Integration 1 (Wnt) signaling pathway, mount normal effector and effector memory CD8 T cell responses to infection with lymphocytic choriomeningitis virus (LCMV). However, Tcf-1-deficient CD8 T cells are selectively impaired in their ability to expand upon secondary challenge and to protect from recurrent virus infection. Tcf-1-deficient mice essentially lack CD8 memory precursor T cells, which is evident already at the peak of the primary response, suggesting that Tcf-1 programs CD8 memory cell fate. The function of Tcf-1 to establish CD8 T cell memory is dependent on the catenin-binding domain in Tcf-1 and requires the Tcf-1 coactivators and Wnt signaling intermediates β-catenin and γ-catenin. These findings demonstrate that the canonical Wnt signaling pathway plays an essential role for CD8 central memory T cell differentiation under physiological conditions in vivo. They raise the possibility that modulation of Wnt signaling may be exploited to improve the generation of CD8 memory T cells during vaccination or for therapies designed to promote sustained cytotoxic CD8 T cell responses against tumors.
γδ T cells function in the early phase of immune responses. Although innate γδ T cells have primarily been studied as one homogenous population, they can be functionally classified into effector subsets based on the production of signature cytokines, analogous to adaptive T helper subsets. Unlike adaptive T cells, however, γδ T effector function correlates with genomically encoded TCR chains, suggesting that clonal TCR selection is not the primary determinant of γδ effector differentiation. A high resolution transcriptome analysis of all emergent γδ thymocyte subsets segregated based on TCRγ/δ chain usage indicates the existence of three separate subtypes of γδ effectors in the thymus. The immature γδ subsets are distinguished by unique transcription factor modules that program effector function.
Summary
Programmed necrosis or necroptosis is an inflammatory form of cell death that critically requires the receptor interacting protein kinase 3 (RIPK3). Here we showed that RIPK3 controls a separate, necrosis-independent pathway of inflammation through regulating dendritic cells (DCs) cytokine expression. Ripk3−/− bone marrow derived dendritic cells (BMDCs) were highly defective in lipopolysaccharide (LPS)-induced expression of inflammatory cytokines. These effects were caused by impaired NF-κB subunit RelB and p50 activation and caspase 1-mediated processing of interleukin-1β (IL-1β). This DC-specific function of RIPK3 was critical for injury-induced inflammation and tissue repair in response to dextran sodium sulfate (DSS). Ripk3−/− mice exhibited an impaired axis of injury-induced IL-1β, IL-23 and IL-22 cytokine cascade, which was partially corrected by adoptive transfer of wild type DCs, but not Ripk3−/− DCs. These results reveal an unexpected function of RIPK3 in NF-κB activation, DC biology, innate inflammatory cytokine expression, and injury-induced tissue repair.
SUMMARY
How innate lymphoid cells (ILCs) in the thymus and gut become specialized effectors is unclear. The prototypic innate-like γδ T cells (Tγδ17) are a major source of interleukin-17 (IL-17). We demonstrate that Tγδ17 cells are programmed by a gene regulatory network consisting of a quartet of High Mobility Group box (HMG) transcription factors, SOX4, SOX13, TCF1 and LEF1, and not by conventional TCR signaling. SOX4 and SOX13 directly regulated the two requisite Tγδ17 cell-specific genes, Rorc and Blk, whereas TCF1 and LEF1 countered the SOX proteins and induced genes of alternate effector subsets. The T cell lineage specification factor TCF1 was also indispensable for the generation of IL-22 producing gut NKp46+ ILCs and restrained cytokine production by Lymphoid Tissue inducer-like effectors. These results indicate that similar gene network architecture programs innate sources of IL-17, independent of anatomical origins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.