Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates.
We performed a prospective screening for Trypanosoma cruzi infection in 1350 Latin American pregnant women and their offspring in Barcelona, Spain. The rate of seroprevalence was 3.4%, and 7.3% of the newborns were infected. Routine screening and management programs in maternity wards may be warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.