Mutations in the genes encoding amyloid-beta precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) are known to cause early-onset, autosomal dominant Alzheimer's disease. Studies of plasma and fibroblasts from subjects with these mutations have established that they all alter amyloid beta-protein (beta APP) processing, which normally leads to the secretion of amyloid-beta protein (relative molecular mass 4,000; M(r) 4K; approximately 90% A beta1-40, approximately 10% A beta1-42(43)), so that the extracellular concentration of A beta42(43) is increased. This increase in A beta42(43) is believed to be the critical change that initiates Alzheimer's disease pathogenesis because A beta42(43) is deposited early and selectively in the senile plaques that are observed in the brains of patients with all forms of the disease. To establish that the presenilin mutations increase the amount of A beta42(43) in the brain and to test whether presenilin mutations act as true (gain of function) dominants, we have now constructed mice expressing wild-type and mutant presenilin genes. Analysis of these mice showed that overexpression of mutant, but not wild-type, PS1 selectively increases brain A beta42(43). These results indicate that the presenilin mutations probably cause Alzheimer's disease through a gain of deleterious function that increases the amount of A beta42(43) in the brain.
We describe two extended haplotypes that cover the human tau gene. In a total of approximately 200 unrelated caucasian individuals there is complete disequilibrium between polymorphisms which span the gene (which covers approximately 100 kb of DNA). This suggests that the establishment of the two haplotypes was an ancient event and either that recombination is suppressed in this region, or that recombinant genes are selected against. Furthermore, we show that the more common haplotype (H1) is significantly over-represented in patients with progressive supranuclear palsy (PSP), extending earlier reports of an association between an intronic dinucleotide polymorphism and PSP.
om as , F e r na n d o G on zález Candelas, SeqCOVID-SPAIN consortium, Tanja Stadler & Richard A. NeherThis is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.