Assessing the inherent uncertainties in satellite data products is a challenging task. Different technical approaches have been developed in the Earth Observation (EO) communities to address the validation problem which results in a large variety of methods as well as terminology. This paper reviews state‐of‐the‐art methods of satellite validation and documents their similarities and differences. First, the overall validation objectives and terminologies are specified, followed by a generic mathematical formulation of the validation problem. Metrics currently used as well as more advanced EO validation approaches are introduced thereafter. An outlook on the applicability and requirements of current EO validation approaches and targets is given.
The representation of tropical precipitation is evaluated across three generations of models participating in the Coupled Model Intercomparison Project (CMIP), phases 3, 5 and 6. Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, the representation of modes of variability, namely the Madden-Julian Oscillation and the El Niño Southern Oscillation, as well as the trends in dry months in the 20th century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the 20th century. The regional biases are larger than a climate-change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest to explore alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.
OceanRAIN—the Ocean Rainfall And Ice-phase precipitation measurement Network—provides in-situ along-track shipboard data of precipitation, evaporation and the resulting freshwater flux at 1-min resolution over the global oceans from June 2010 to April 2017. More than 6.83 million minutes with 75 parameters from 8 ships cover all routinely measured atmospheric and oceanographic state variables along with those required to derive the turbulent heat fluxes. The precipitation parameter is based on measurements of the optical disdrometer ODM470 specifically designed for all-weather shipboard operations. The rain, snow and mixed-phase precipitation occurrence, intensity and accumulation are derived from particle size distributions. Additionally, microphysical parameters and radar-related parameters are provided. Addressing the need for high-quality in-situ precipitation data over the global oceans, OceanRAIN-1.0 is the first comprehensive along-track in-situ water cycle surface reference dataset for satellite product validation and retrieval calibration of the GPM (Global Precipitation Measurement) era, to improve the representation of precipitation and air-sea interactions in re-analyses and models, and to improve understanding of water cycle processes over the global oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.