Lymphatic malformations (LM) are characterized by the overgrowth of lymphatic vessels during pre- and postnatal development. Macrocystic, microcystic and combined forms of LM are known. The cysts are lined by lymphatic endothelial cells (LECs). Resection and sclerotherapy are the most common treatment methods. Recent studies performed on LM specimens in the United States of America have identified activating mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene in LM. However, whole tissue but not isolated cell types were studied. Here, we studied LM tissues resected at the University Hospitals Freiburg and Regensburg, Germany. We isolated LECs and fibroblasts separately, and sequenced the commonly affected exons 8, 10, and 21 of the PIK3CA gene. We confirm typical monoallelic mutations in 4 out of 6 LM-derived LEC lines, and describe two new mutations i.) in exon 10 (c.1636C>A; p.Gln546Lys), and ii.) a 3bp in-frame deletion of GAA (Glu109del). LM-derived fibroblasts did not possess such mutations, showing cell-type specificity of the gene defect. High activity of the PIK3CA—AKT- mTOR pathway was demonstrated by hyperphosphorylation of AKT-Ser473 in all LM-derived LECs (including the ones with newly identified mutations), as compared to normal LECs. Additionally, hyperphosphorylation of ERK was seen in all LM-derived LECs, except for the one with Glu109del. In vitro, the small molecule kinase inhibitors Buparlisib/BKM-120, Wortmannin, and Ly294002, (all inhibitors of PIK3CA), CAL-101 (inhibitor of PIK3CD), MK-2206 (AKT inhibitor), Sorafenib (multiple kinases inhibitor), and rapamycin (mTOR inhibitor) significantly blocked proliferation of LM-derived LECs in a concentration-dependent manner, but also blocked proliferation of normal LECs. However, MK-2206 appeared to be more specific for mutated LECs, except in case of Glu109 deletion. In sum, children that are, or will be, treated with kinase inhibitors must be monitored closely.
Biological activities of vascular endothelial growth factor (VEGF) have been studied extensively in endothelial cells (ECs), but few data are available regarding its effects on pericytes. In murine embryoid body cultures, VEGF-induced expression of desmin and ␣-smooth muscle actin (␣-SMA) in CD-31 ϩ cells. The number of CD-31 ϩ /desmin ϩ vascular chords increased with VEGF treatment time and peaked during a differentiation window between 6 and 9 days after plating. In vivo, VEGF-induced elongation and migration of desmin-positive pericytes and coverage of angiogenic capillaries, as revealed by analysis of Sambucus nigra lectin-stained vascular beds of the chick chorioallantoic membrane. VEGF also caused significant decrease of intercapillary spaces, an indicator for intussusceptive vascular growth. These VEGF-mediated effects point at a more intricate interaction between ECs and pericytes cells than previously demonstrated and suggest that pericytes may be derived from EC progenitors in vitro and not only stabilize capillaries but also participate in vascular remodeling in vivo.
Neuroblastoma is the most frequent solid childhood malignancy. Despite aggressive therapy, mortality is high due to rapid tumor progression to advanced stages. The molecules and mechanisms underlying poor prognosis are not well understood. Here, we report that cultured human neuroblastoma cells express the hepatocyte growth factor (HGF) and its receptor c-Met. Binding of HGF to c-Met triggers receptor autophosphorylation, indicating functional relevance of this interaction. HGF activates several downstream effectors of c-Met such as the mitogen-activated protein kinases extracellular signal-regulated kinase 1/extracellular signal-regulated kinase 2 and phospholipase C-␥, whereas signal transducer and activator of transcription 3 is constitutively activated in neuroblastoma cells expressing c-Met. In addition, HGF is able to stimulate expression and proteolytic activity of matrix metalloproteinase-2 and tissue-type plasminogen activator in neuroblastoma cells, thereby promoting degradation of extracellular matrix components. We show that HGF stimulates invasion of neuroblastoma cells in vitro and in vivo, and it promotes the formation of angiogenic neuroblastomas in vivo. These processes can be blocked by specific inhibitors of the mitogen-activated protein kinase cascade, by inhibitors of phospholipase C-␥, and also by the expression of a dominant negative signal transducer and activator of transcription 3 mutant. Our data provide the first evidence that the HGF/c-Met pathway is essential for invasiveness and malignant progression of human neuroblastomas. They further suggest that specific inhibitors of this pathway may be suitable as therapeutic agents to improve clinical outcome of neuroblastomas.
Neuroblastoma is the most frequent extracranial solid malignancy of childhood with a high mortality in advanced tumour stages. The hallmark of neuroblastoma is its clinical and biological heterogeneity. The molecular mechanisms leading to favourable or unfavourable tumour behaviour are still speculative. However, amplification of the oncogene MYCN and expression of the neurotrophin receptor TrkB are known to contribute to a highly malignant phenotype. To define the mechanisms through which TrkB may mediate neuroblastoma progression, we stably expressed this receptor in the neuroblastoma cell lines SH-SY5Y and SK-N-AS. The transfectants, but not the controls, had an increased invasive potency both, in vitro and in vivo, as demonstrated by Matrigel-invasion and chorioallantoic membrane assays, respectively. The retinoic acid-induced TrkB expression in parental SH-SY5Y cells was also associated with enhanced cell invasiveness. The TrkB mediated invasiveness involved the upregulation of the hepatocyte growth factor (HGF) and its receptor c-Met, resulting in an autocrine loop. Inhibition of HGF activity by anti-HGF neutralizing antibodies or disabling the function of c-Met by small interfering RNA suppressed the TrkB-induced invasiveness. The enhanced TrkB expression was associated with a significant increase in the secretion of various matrix-degrading proteases. Immunostaining and real-time RT-PCR analysis of tumour specimens demonstrated coordinated expression of TrkB and HGF/c-Met in experimental and primary neuroblastomas. We conclude that TrkB expression in neuroblastoma cells results in an increase in their invasive capability via upregulated expression of HGF/c-Met and enhanced activity of proteolytic networks.
BackgroundProspero-related homeobox 1 (Prox1) transcription factor was described as a tumor-suppressor gene in liver tumors. In contrast, Prox1 knock out in murine embryos drastically reduces proliferation of hepatoblasts.MethodsWe have studied the expression of Prox1 in normal liver, liver cirrhosis and peritumoral liver samples in comparison to hepatocellular (HCC) and cholangiocellular carcinoma (CCC) at mRNA, protein and functional levels.ResultsProx1 was found in hepatocytes of normal liver, while normal bile duct epithelial cells were negative. However, Prox1+ cells, which co-expressed biliary epithelial makers and showed ductular morphology, could be detected within fibrotic septa of cirrhotic livers, and in both HCC and CCC. Two Prox1 mRNA isoforms (2.9 kb and 7.9 kb) were identified with a prevalence of the longer isoform in several HCC samples and the shorter in most CCC samples. Evidence was provided that Myc-associated zinc finger protein (MAZ) might significantly contribute to the gene expression of Prox1 in HCC, while neo-expression of Prox1 in CCC remains to be resolved. A point mutation in the prospero domain of Prox1 was found in one HCC sample.ConclusionOur study shows dysregulation of Prox1 in liver cirrhosis, HCC and CCC, such as neo-expression in cells with biliary epithelial phenotype in liver cirrhosis, and in CCC. Altered Prox1 mRNA expression is partly regulated by MAZ, and mutation of the prospero domain in HCC indicates an involvement for Prox1 during tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.