Recent advances in animal tracking technology have ushered in a new era in biologging. However, the considerable size of many sophisticated biologging devices restricts their application to larger animals, whereas older techniques often still represent the state-of-theart for studying small vertebrates. In industrial applications, low-power wireless sensor networks (WSNs) fulfill requirements similar to those needed to monitor animal behavior at high resolution and at low tag mass. We developed a wireless biologging network (WBN), which enables simultaneous direct proximity sensing, high-resolution tracking, and long-range remote data download at tag masses of 1 to 2 g. Deployments to study wild bats created social networks and flight trajectories of unprecedented quality. Our developments highlight the vast capabilities of WBNs and their potential to close an important gap in biologging: fully automated tracking and proximity sensing of small animals, even in closed habitats, at high spatial and temporal resolution.
This paper describes the development of a scooter supporting the mobility of older people. The scooter is equipped with a drive assistance system and a special scooter navigation system. The drive assistance system consists of a velocity controller, a steering controller, and a collision avoidance system. In this paper it is demonstrated how the challenging control and steering tasks are modified to increase safety for older people. A special scooter navigation system is presented, to support elderly people in navigating on a safe route through the city using sidewalks, pedestrian lights and crosswalks. For extended positioning requirements a hybrid positioning system was developed combining GPS, WLAN, and inertial sensor data. By combination of these technical improvements it is demonstrated how older people are able to preserve their self-determined and independent life. Usability research was done with focus groups in order to become familiar with global user demands and expectations towards a mobility assistance system. Results show that the system components are expected to assist the user in navigation, steering and speed control rather than to take complete control on the driving situation.
Radio signal-based positioning in environments with complex propagation paths is a challenging task for classical positioning methods. For example, in a typical industrial environment, objects such as machines and workpieces cause reflections, diffractions, and absorptions, which are not taken into account by classical lateration methods and may lead to erroneous positions. Only a few data-driven methods developed in recent years can deal with these irregularities in the propagation paths or use them as additional information for positioning. These methods exploit the channel impulse responses (CIR) that are detected by ultra-wideband radio systems for positioning. These CIRs embed the signal properties of the underlying propagation paths that represent the environment. This article describes a feature-based localization approach that exploits machine-learning to derive characteristic information of the CIR signal for positioning. The approach is complete without highly time-synchronized receiver or arrival times. Various features were investigated based on signal propagation models for complex environments. These features were then assessed qualitatively based on their spatial relationship to objects and their contribution to a more accurate position estimation. Three datasets collected in environments of varying degrees of complexity were analyzed. The evaluation of the experiments showed that a clear relationship between the features and the environment indicates that features in complex propagation environments improve positional accuracy. A quantitative assessment of the features was made based on a hierarchical classification of stratified regions within the environment. Classification accuracies of over 90% could be achieved for region sizes of about 0.1 m 2 . An application-driven evaluation was made to distinguish between different screwing processes on a car door based on CIR measures. While in a static environment, even with a single infrastructure tag, nearly error-free classification could be achieved, the accuracy of changes in the environment decreases rapidly. To adapt to changes in the environment, the models were retrained with a small amount of CIR data. This increased performance considerably. The proposed approach results in highly accurate classification, even with a reduced infrastructure of one or two tags, and is easily adaptable to new environments. In addition, the approach does not require calibration or synchronization of the positioning system or the installation of a reference system.
In this paper, the BATS project is presented, which aims to track the behavior of bats via an ultra-low power wireless sensor network. An overview about the whole project and its parts like sensor node design, tracking grid and software infrastructure is given and the evaluation of the project is shown. The BATS project includes a lightweight sensor node that is attached to bats and combines multiple features. Communication among sensor nodes allows tracking of bat encounters. Flight trajectories of individual tagged bats can be recorded at high spatial and temporal resolution by a ground node grid. To increase the communication range, the BATS project implemented a long-range telemetry system to still receive sensor data outside the standard ground node network. The whole system is designed with the common goal of ultra-low energy consumption while still maintaining optimal measurement results. To this end, the system is designed in a flexible way and is able to adapt its functionality according to the current situation. In this way, it uses the energy available on the sensor node as efficient as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.