Hematopoietic progenitor cells migrate in vitro and in vivo towards a gradient of the chemotactic factor stromal cell-derived factor-1 (SDF-1) produced by stromal cells. This is the first chemoattractant reported for human CD34+ progenitor cells. Concentrations of SDF-1 that elicit chemotaxis also induce a transient elevation of cytoplasmic calcium in CD34+ cells. SDF-1-induced chemotaxis is inhibited by pertussis toxin, suggesting that its signaling in CD34+ cells is mediated by seven transmembrane receptors coupled to Gi proteins. CD34+ cells migrating to SDF-1 include cells with a more primitive (CD34+/CD38− or CD34+/DR−) phenotype as well as CD34+ cells phenotypically committed to the erythroid, lymphoid and myeloid lineages, including functional BFU-E, CFU-GM, and CFU-MIX progenitors. Chemotaxis of CD34+ cells in response to SDF-1 is increased by IL-3 in vitro and is lower in CD34+ progenitors from peripheral blood than in CD34+ progenitors from bone marrow, suggesting that an altered response to SDF-1 may be associated with CD34 progenitor mobilization.
In this study we provide evidence that the SDF-1alpha/CXCR4 chemokine axis is involved in both the retention of neutrophils within the bone marrow and the homing of senescent neutrophils back to the bone marrow. We show that the functional responses of freshly isolated human and murine neutrophils to CXCR2 chemokines are significantly attenuated by SDF-1alpha, acting via CXCR4. As a consequence, the mobilization of neutrophils from the bone marrow in vivo by the CXCR2-chemokine, KC, was dramatically enhanced by blocking the effects of endogenous SDF-1alpha using a specific CXCR4 antagonist. As neutrophils age, they upregulate expression of CXCR4 and acquire the ability to migrate toward SDF-1alpha. We show here that these senescent CXCR4(high) neutrophils preferentially home to the bone marrow in vivo in a CXCR4-dependent manner, suggesting a previously undefined mechanism for the clearance of senescent neutrophils from the circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.