These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
Expression of MUC1 in endometrial epithelium has been suggested to create a barrier to embryo attachment that must be lifted at the time of implantation. In this study, we investigated the hormonal regulation of human endometrial MUC1 in hormone replacement therapy cycles and in the human blastocyst. We also analyzed the embryonic regulation of MUC1 in human endometrial epithelial cells (EECs) during the apposition and adhesion phases of human implantation using two different in vitro models. Our results indicate that endometrial MUC1 mRNA and immunoreactive protein increase in receptive endometrium compared to nonreceptive endometrium. Human blastocysts express MUC1, as demonstrated by reverse transcription-polymerase chain reaction and immunocytochemistry, localized at the trophectoderm. In vitro, MUC1 was present at the surface of primary cultures of human EEC, and presence of a human blastocyst (i.e., apposition phase) increases EEC MUC1 protein and mRNA compared to control EEC lacking embryos. Interestingly, when human blastocysts were allowed to attach to the EEC monolayer (i.e., adhesion phase), MUC1 was locally removed in a paracrine fashion on EEC at the implantation site. These results demonstrate a coordinated hormonal and embryonic regulation of EEC MUC1. Progesterone combined with estradiol priming induces an up-regulation of MUC1 at the receptive endometrium. During the apposition phase, presence of a human embryo increases EEC MUC1. However, at the adhesion phase, the embryo induces a paracrine cleavage of EEC MUC1 at the implantation site. These findings strongly suggest that MUC1 may act as an endometrial antiadhesive molecule that must be locally removed by the human blastocyst during the adhesion phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.