In a Plenary Paper, Mittelman and colleagues assess the relative clinical efficacy of mRNA vaccination on COVID-19 disease incidence and outcomes in patients with hematologic malignancies compared with healthy matched controls. This population-based study from Israel links prior observations of poor serologic responses to vaccination to higher risk for breakthrough infection, hospitalization, and death in patients with blood cancer, especially those on active antineoplastic therapy. In an accompanying Letter to Blood, Pagano et al provide supportive data using a multination survey approach to capture outcomes for COVID-19 in vaccinated patients with hematologic neoplasms. They also emphasize the higher risk among patients with lymphoid malignancies. Together, these findings argue for both continued deployment of booster programs and ongoing public health guidance for this vulnerable group.
(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; p < 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson’s index, heart rate and respiratory rate upon admission >20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.
BACKGROUND: Identification of patients on admission to hospital with coronavirus infectious disease 2019 (COVID-19) pneumonia who can develop poor outcomes has not yet been comprehensively assessed. OBJECTIVE: To compare severity scores used for community-acquired pneumonia to identify high-risk patients with COVID-19 pneumonia. DESIGN: PSI, CURB-65, qSOFA, and MuLBSTA, a new score for viral pneumonia, were calculated on admission to hospital to identify high-risk patients for in-hospital mortality, admission to an intensive care unit (ICU), or use of mechanical ventilation. Area under receiver operating characteristics curve (AUROC), sensitivity, and specificity for each score were determined and AUROC was compared among them. PARTICIPANTS: Patients with COVID-19 pneumonia included in the SEMI-COVID-19 Network. KEY RESULTS: We examined 10,238 patients with COVID-19. Mean age of patients was 66.6 years and 57.9% were males. The most common comorbidities were as follows: hypertension (49.2%), diabetes (18.8%), and chronic obstructive pulmonary disease (12.8%). Acute respiratory distress syndrome (34.7%) and acute kidney injury (13.9%) were the most common complications. Inhospital mortality was 20.9%. PSI and CURB-65 showed the highest AUROC (0.835 and 0.825, respectively). qSOFA and MuLBSTA had a lower AUROC (0.728 and 0.715, respectively). qSOFA was the most specific score (specificity 95.7%) albeit its sensitivity was only 26.2%. PSI had the highest sensitivity (84.1%) and a specificity of 72.2%. CONCLUSIONS: PSI and CURB-65, specific severity scores for pneumonia, were better than qSOFA and MuLBSTA at predicting mortality in patients with COVID-19 pneumonia. Additionally, qSOFA, the simplest score to perform, was the most specific albeit the least sensitive.
To determine the proportion of patients with COVID-19 who were readmitted to the hospital and the most common causes and the factors associated with readmission. Multicenter nationwide cohort study in Spain. Patients included in the study were admitted to 147 hospitals from March 1 to April 30, 2020. Readmission was defined as a new hospital admission during the 30 days after discharge. Emergency department visits after discharge were not considered readmission. During the study period 8392 patients were admitted to hospitals participating in the SEMI-COVID-19 network. 298 patients (4.2%) out of 7137 patients were readmitted after being discharged. 1541 (17.7%) died during the index admission and 35 died during hospital readmission (11.7%, p = 0.007). The median time from discharge to readmission was 7 days (IQR 3–15 days). The most frequent causes of hospital readmission were worsening of previous pneumonia (54%), bacterial infection (13%), venous thromboembolism (5%), and heart failure (5%). Age [odds ratio (OR): 1.02; 95% confident interval (95% CI): 1.01–1.03], age-adjusted Charlson comorbidity index score (OR: 1.13; 95% CI: 1.06–1.21), chronic obstructive pulmonary disease (OR: 1.84; 95% CI: 1.26–2.69), asthma (OR: 1.52; 95% CI: 1.04–2.22), hemoglobin level at admission (OR: 0.92; 95% CI: 0.86–0.99), ground-glass opacification at admission (OR: 0.86; 95% CI:0.76–0.98) and glucocorticoid treatment (OR: 1.29; 95% CI: 1.00–1.66) were independently associated with hospital readmission. The rate of readmission after hospital discharge for COVID-19 was low. Advanced age and comorbidity were associated with increased risk of readmission.
Background The WHO ordinal severity scale has been used to predict mortality and guide trials in COVID-19. However, it has its limitations. Objective The present study aims to compare three classificatory and predictive models: the WHO ordinal severity scale, the model based on inflammation grades, and the hybrid model. Design Retrospective cohort study with patient data collected and followed up from March 1, 2020, to May 1, 2021, from the nationwide SEMI-COVID-19 Registry. The primary study outcome was in-hospital mortality. As this was a hospital-based study, the patients included corresponded to categories 3 to 7 of the WHO ordinal scale. Categories 6 and 7 were grouped in the same category. Key Results A total of 17,225 patients were included in the study. Patients classified as high risk in each of the WHO categories according to the degree of inflammation were as follows: 63.8% vs. 79.9% vs. 90.2% vs. 95.1% ( p <0.001). In-hospital mortality for WHO ordinal scale categories 3 to 6/7 was as follows: 0.8% vs. 24.3% vs. 45.3% vs. 34% ( p <0.001). In-hospital mortality for the combined categories of ordinal scale 3a to 5b was as follows: 0.4% vs. 1.1% vs. 11.2% vs. 27.5% vs. 35.5% vs. 41.1% ( p <0.001). The predictive regression model for in-hospital mortality with our proposed combined ordinal scale reached an AUC=0.871, superior to the two models separately. Conclusions The present study proposes a new severity grading scale for COVID-19 hospitalized patients. In our opinion, it is the most informative, representative, and predictive scale in COVID-19 patients to date. Supplementary Information The online version contains supplementary material available at 10.1007/s11606-022-07511-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.