Poly(vinylidene fluoride) (PVDF) and MOF-808-based separators for lithium-ion batteries (LIBs) have been prepared and fully characterized in terms of morphological and thermal properties, electrolyte uptake, and retention, and surface hydrophilic characteristics. The effect of PVDF/MOF-808 separators on the electrochemical performance of LIBs has been evaluated. The PVDF/MOF-808 membranes exhibit a well-defined porous structure with a uniform distribution of interconnected macro-to mesopores. The inclusion of the Zr-based MOF nanoparticles increases the porosity and surface area of the separator, enhancing the electrolyte uptake and the ionic conductivity. Finally, the presence of MOF-808 fillers improves the liquid electrolyte retention, which prevents the capacity fading at high C-rates cycling. Indeed, charge−discharge tests performed in Li/C-LiFePO 4 half-cells reveal a discharge capacity of 68 mAh•.g −1 at 2C-rate for PVDF/MOF-808 membranes, in comparison with the 0 mAh•g −1 obtained for pure PVDF. The PVDF/10 wt % MOF-808 sample shows a long-term stable cycling behavior with a Coulombic efficiency close to 100%. Thus, it is shown that the composite membranes represent an improvement with respect to conventional separators for lithium ion battery applications, since they coupled the polymer meso-and macroporous structure with the wellordered microporous system of the MOFs, which improve significantly the electrolyte affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.