[1] Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We discuss the spectrum of fiber-optic tools that may be employed to make these measurements, illuminating the potential and limitations of these methods in hydrologic science. There are trade-offs between precision in temperature, temporal resolution, and spatial resolution, following the square root of the number of measurements made; thus brief, short measurements are less precise than measurements taken over longer spans in time and space. Five illustrative applications demonstrate configurations where the distributed temperature sensing (DTS) approach could be used: (1) lake bottom temperatures using existing communication cables, (2) temperature profile with depth in a 1400 m deep decommissioned mine shaft, (3) air-snow interface temperature profile above a snow-covered glacier, (4) air-water interfacial temperature in a lake, and (5) temperature distribution along a first-order stream. In examples 3 and 4 it is shown that by winding the fiber around a cylinder, vertical spatial resolution of millimeters can be achieved. These tools may be of exceptional utility in observing a broad range of hydrologic processes, including evaporation, infiltration, limnology, and the local and overall energy budget spanning scales from 0.003 to 30,000 m. This range of scales corresponds well with many of the areas of greatest opportunity for discovery in hydrologic science.Citation: Selker, J.
Fresh precipitates, deposited from seepage waters of complex-ore mine-tailing impoundment at Zlaté Hory, Czech Republic, were characterized by means of X-ray diffraction, transmission electron microscopy, low temperature and in-field Mössbauer spectroscopy, and Brunauer-Emmett-Teller surface area measurements. The prevailing phases (approximately 96 wt %) found in precipitates are poorly crystalline, 2-6 nm sized two-line ferrihydrite, forming globular aggregates of about 150 nm in diameter, rimmed by acicular irregular nanocrystals of goethite. These nanocrystalline ferrihydrite-goethite precipitates are of a relatively high chemical purity (approximately 3% SiO2, Zn approximately 1300 ppm, trace and rare earth elements < 100 ppm) and thus applicable in various nanotechnologies. With a surface area of 270 m2 g(-1), precipitate possesses a high catalytic activity in the decomposition of hydrogen peroxide, which is comparable with that found for commercially accessible FeO(OH) catalyst. Another superior aspect of such natural nanoparticles presents a cheap and suitable precursor for a thermally induced solid-state synthesis of the stable core-shell alpha-Fe-FeO nanoparticles that are well applicable in reductive technologies of groundwater treatment. Just the possibility of using the undesirable waste contaminating the environment in further environmental technologies is the key practical benefit discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.