Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.
When comet nuclei approach the Sun, the increasing energy flux through the surface layers leads to sublimation of the underlying ices and subsequent outgassing that promotes the observed emission of gas and dust. While the release of gas can be straightforwardly understood by solving the heat-transport equation and taking into account the finite permeability of the ice-free dust layer close to the surface of the comet nucleus, the ejection of dust additionally requires that the forces binding the dust particles to the comet nucleus must be overcome by the forces caused by the sublimation process. This relates to the question of how large the tensile strength of the overlying dust layer is. Homogeneous layers of micrometer-sized dust particles reach tensile strengths of typically 10 Then we experimentally measure the tensile strengths of layers of laboratory dust aggregates and confirm the values derived by the model. To explain the comet activity driven by the evaporation of water ice, we derive a minimum size for the dust aggregates of ∼ 1 mm, in agreement with meteoroid observations and dustagglomeration models in the solar nebula. Finally we conclude that cometesimals must have formed by gravitational instability, because all alternative formation models lead to higher tensile strengths of the surface layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.