In a clinical study of recombinant adenoassociated virus-2 expressing human factor IX (AAV2-FIX), we detected 2 impediments to long-term gene transfer. First, preexisting anti-AAV neutralizing antibodies (NABs) prevent vector from reaching the target tissue, and second, CD8 ؉ T-cell responses to hepatocyte-cell surface displayed AAV-capsid-terminated FIX expression after several weeks. Because the vector is incapable of synthesizing viral proteins, a short course of immunosuppression, until AAV capsid is cleared from the transduced cells, may mitigate the host T-cell response, allowing longterm expression of FIX. To evaluate coadministration of immunosuppression, we studied AAV8 vector infusion in rhesus macaques, natural hosts for AAV8. We administered AAV8-FIX in 16 macaques via the hepatic artery and assessed the effects of (1)
IntroductionHemophilia A, a congenital deficiency or dysfunction of factor VIII (FVIII), is the most common severe inherited bleeding disorder in humans. Severe hemophilia A patients have less than 1% of normal FVIII activity, and suffer from spontaneous or traumatic joint and muscle hemorrhage, leading to a chronic painful and disabling arthropathy. Bleeding into body cavities or the brain can result in significant morbidity and mortality if not treated aggressively. 1 Current treatment in the developed world, FVIII protein replacement, has established that restoring circulating FVIII levels above 1% of normal prevents most spontaneous bleeding, and levels above 5% are sufficient to improve the disease from a severe to a mild form. However, the limited worldwide supplies of both plasma-derived and recombinant FVIII, its short half-life in vivo (ϳ 12 hours), and the high cost of treatment (Ͼ $150 000 per year) make gene therapy an attractive alternative to better manage and cure the disease.Previously, we have shown that gene therapy with an AAV2 vector encoding a B-domain-deleted (BDD) canine FVIII (cFVIII) cDNA under the control of a liver-specific promoter resulted in an average of 2% to 3% of normal canine FVIII activity in 2 hemophilia A dogs, 2 providing preliminary support for the feasibility of this approach in humans. In order to further improve the efficacy of liver-targeted AAV-cFVIII, we explored the possibility of using alternative serotypes of AAV. We also assessed the duration of therapeutic benefit following a single injection of AAV-cFVIII in hemophilia A dogs.Since the isolation of AAV2, many different AAV serotypes have been isolated from human and nonhuman primate tissues. 3 In comparison with the prototypic AAV2, AAV vectors pseudotyped with other serotypes show superior transduction efficiency in various tissues: AAV1 in muscle, 4 pancreatic islets, 5 heart, 6 vascular endothelium, 7 brain and central nervous system (CNS), 8,9 and liver 10 ; AAV3 in Cochlear inner hair cells 11 ; AAV4 in brain 12 ; AAV5 in brain and CNS, 8,13 lung, 14-16 eye, 17,18 arthritic joints, 19 and liver 20 ; AAV6 in muscle, 21,22 heart, 23 and airway epithelium 24 ; AAV7 in muscle 4 ; and AAV8 in muscle, 4,25 pancreas, 26 heart, 25 and liver. [27][28][29][30][31] The tissue tropism of different AAV serotypes may permit targeting of AAV vectors to human disease. However, as most of these tissue-specific tropisms have been reported in the rodent, it is important to evaluate cross-species fidelity of differential targeting among serotypes in larger animal modelsIn this report, we have compared the efficacy, gene transfer efficiency, and biodistribution of AAV-cFVIII vectors of serotypes 2, 5, 6, and 8 delivered by portal-vein injection in hemophilia A mice. Furthermore, since prior studies have demonstrated that the hemophilia dog model, compared with the mouse model, more accurately predicts the therapeutic outcomes in humans and other primates, 32,33 we have determined the long-term efficacy and safety of AAV2-cFVI...
In a phase I study, administration of an AAV2-FIX vector into the skeletal muscle of eight hemophilia B subjects proved safe and achieved local gene transfer and FIX expression for at least 10 months after vector injection, the last time point assessed by muscle biopsy. In hemophilia B dogs we have demonstrated FIX in both muscle biopsies and circulation >4 years following AAV2-FIX injection. Because circulating FIX levels remained less than 1% of normal in human subjects from the study, the duration of AAV2-mediated transgene expression in humans is unknown. We sought to determine if FIX gene transfer and expression persisted locally at injection sites. Muscle biopsies were obtained from one subject 3.7 years following treatment and revealed transgene FIX DNA and protein by quantitative PCR, DNA fluorescence in situ hybridization, and immunohistochemistry for FIX. These results demonstrate, for the first time, multiyear FIX expression by AAV2 vector in humans and suggest that improved muscle delivery provides effective treatment for protein deficiencies or muscle-specific diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.