SUMMARY Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory.
The critical nature of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician/advanced practice provider and the microbiologists who provide enormous value to the healthcare team. This document, developed by experts in laboratory and adult and pediatric clinical medicine, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. This document presents a system-based approach rather than specimen-based approach, and includes bloodstream and cardiovascular system infections, central nervous system infections, ocular infections, soft tissue infections of the head and neck, upper and lower respiratory infections, infections of the gastrointestinal tract, intra-abdominal infections, bone and joint infections, urinary tract infections, genital infections, and other skin and soft tissue infections; or into etiologic agent groups, including arthropod-borne infections, viral syndromes, and blood and tissue parasite infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. In addition, the pediatric needs of specimen management are also emphasized. There is intentional redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a guidance for physicians in choosing tests that will aid them to quickly and accurately diagnose infectious diseases in their patients.
The critical nature of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician/advanced practice provider and the microbiologists who provide enormous value to the healthcare team. This document, developed by experts in laboratory and adult and pediatric clinical medicine, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. This document presents a system-based approach rather than specimen-based approach, and includes bloodstream and cardiovascular system infections, central nervous system infections, ocular infections, soft tissue infections of the head and neck, upper and lower respiratory infections, infections of the gastrointestinal tract, intra-abdominal infections, bone and joint infections, urinary tract infections, genital infections, and other skin and soft tissue infections; or into etiologic agent groups, including arthropod-borne infections, viral syndromes, and blood and tissue parasite infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. In addition, the pediatric needs of specimen management are also emphasized. There is intentional redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a guidance for physicians in choosing tests that will aid them to quickly and accurately diagnose infectious diseases in their patients.
Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis. Intense activity is focused on identifying a clinical intervention that results in a long term, drug free remission of HIV-1 infection. Latently infected CD4 T cells harbor transcriptionally silent, replication-competent HIV. Because these cells persist long term and are unaffected by current therapies, the cells represent an HIV reservoir that remains undiminished by current approaches. Pilot clinical trials have tested whether reactivation of HIV-1 from latency will decrease the number of cells containing HIV DNA due to viral cytopathic effect or immune-mediated clearance. The latency reversal agents vorinostat, panobinostat, and romidepsin result in HIV reactivation, as measured by increases in cell-associated HIV RNA, but no change in cell-associated HIV DNA, indicating that the reactivating cells do not die (1-4). Multiple ongoing studies are testing augmentation of the anti-HIV immune response in combination with viral reactivation as a strategy for HIV eradication.In an effort to inform these attempts to eradicate the HIV reservoir, we and others have been examining the mechanistic basis for HIV-induced killing of CD4 T cells under different circumstances of activation and HIV replication. Although numerous pathways may contribute to the decline of uninfected CD4 T cells during uncontrolled HIV infection (5), fewer pathways have been implicated in the demise of cells directly infected by HIV. After HIV attachment, at least three distinct pathways can initiate the death of infected cells: (i) RIG-I-mediated sensing of HIV RNA (6, 7), (ii) IFI-16 sensing of unintegrated HIV DNA (8, 9), and (iii) DNA-PK-sensing of HIV integrase nicking of host DNA (10). Once integrated into host DNA, HIV can remain in a latent state
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.