Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves the efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.
K562 is widely used in biomedical research. It is one of three tier-one cell lines of ENCODE and also most commonly used for large-scale CRISPR/Cas9 screens. Although its functional genomic and epigenomic characteristics have been extensively studied, its genome sequence and genomic structural features have never been comprehensively analyzed. Such information is essential for the correct interpretation and understanding of the vast troves of existing functional genomics and epigenomics data for K562. We performed and integrated deep-coverage whole-genome (short-insert), mate-pair, and linkedread sequencing as well as karyotyping and array CGH analysis to identify a wide spectrum of genome characteristics in K562: copy numbers (CN) of aneuploid chromosome segments at high-resolution, SNVs and indels (both corrected for CN in aneuploid regions), loss of heterozygosity, megabase-scale phased haplotypes often spanning entire chromosome arms, structural variants (SVs), including small and large-scale complex SVs and nonreference retrotransposon insertions. Many SVs were phased, assembled, and experimentally validated. We identified multiple allele-specific deletions and duplications within the tumor suppressor gene FHIT. Taking aneuploidy into account, we reanalyzed K562 RNA-seq and wholegenome bisulfite sequencing data for allele-specific expression and allele-specific DNA methylation. We also show examples of how deeper insights into regulatory complexity are gained by integrating genomic variant information and structural context with functional genomics and epigenomics data. Furthermore, using K562 haplotype information, we produced an allele-specific CRISPR targeting map. This comprehensive whole-genome analysis serves as a resource for future studies that utilize K562 as well as a framework for the analysis of other cancer genomes.
HepG2 is one of the most widely used human cancer cell lines in biomedical research and one of the main cell lines of ENCODE. Although the functional genomic and epigenomic characteristics of HepG2 are extensively studied, its genome sequence has never been comprehensively analyzed and higher order genomic structural features are largely unknown. The high degree of aneuploidy in HepG2 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from HepG2 requires an understanding of the cell line’s genome sequence and genome structure. Using a variety of sequencing and analysis methods, we identified a wide spectrum of genome characteristics in HepG2: copy numbers of chromosomal segments at high resolution, SNVs and Indels (corrected for aneuploidy), regions with loss of heterozygosity, phased haplotypes extending to entire chromosome arms, retrotransposon insertions and structural variants (SVs) including complex and somatic genomic rearrangements. A large number of SVs were phased, sequence assembled and experimentally validated. We re-analyzed published HepG2 datasets for allele-specific expression and DNA methylation and assembled an allele-specific CRISPR/Cas9 targeting map. We demonstrate how deeper insights into genomic regulatory complexity are gained by adopting a genome-integrated framework.
K562 is one of the most widely used human cell lines in biomedical research. It is one of three tier-one cell lines of ENCODE, and one of the cell lines most commonly used for large-scale CRISPR/Cas9 gene-editing screens. Although the functional genomic and epigenomic characteristics of K562 are extensively studied, its genome sequence has never been comprehensively analyzed and higher-order structural features of its genome beyond its karyotype were only cursorily known. The high degree of aneuploidy in K562 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from K562 requires an understanding of the cell line's genome sequence and genome structure. We performed very-deep short-insert whole-genome sequencing, mate-pair sequencing, linked-read sequencing, karyotyping and array CGH, and used a combination of novel and established computational methods to identify and catalog a wide spectrum of genome sequence variants and genome structural features in K562: copy numbers (CN) of chromosome segments, SNVs and Indels (allele frequencycorrected based on copy-number), phased haplotype blocks (N50 = 2.72 Mb), structural variants (SVs) including complex genomic rearrangements, and novel mobile element insertions. A large fraction of SVs were phased, sequence assembled, and experimentally validated. Many chromosomes show striking loss of heterozygosity. To demonstrate the utility of this knowledge, we re-analyzed K562 RNA-Seq and whole-genome bisulfite sequencing data to detect and phase allele-specific expression and DNA methylation patterns, respectively. We show examples where deeper insights into genomic regulatory complexity could be gained by taking knowledge of genomic structural contexts into account. Furthermore, we used the haplotype information to produce a phased CRISPR targeting map, i.e. a catalog of loci where CRISPR guide RNAs will bind in an allele-specific manner. This comprehensive whole-genome analysis serves as a resource for future studies that utilize K562 and as the basis of advanced analyses of the rich amounts of the functional genomics data produced by ENCODE for K562. It is also an example for advanced, integrated whole-genome sequence and structure analysis, beyond standard short-read/short-insert whole-genome sequencing, of human genomes in general and in particular of cancer genomes with large numbers of complex sequence alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.