De novo mutations (DNMs) originating in gametogenesis are an important source of genetic variation. We use a data set of 7,216 autosomal DNMs with resolved parent of origin from whole-genome sequencing of 816 parent-offspring trios to investigate differences between maternally and paternally derived DNMs and study the underlying mutational mechanisms. Our results show that the number of DNMs in offspring increases not only with paternal age, but also with maternal age, and that some genome regions show enrichment for maternally derived DNMs. We identify parent-of-origin-specific mutation signatures that become more pronounced with increased parental age, pointing to different mutational mechanisms in spermatogenesis and oogenesis. Moreover, we find DNMs that are spatially clustered to have a unique mutational signature with no significant differences between parental alleles, suggesting a different mutational mechanism. Our findings provide insights into the molecular mechanisms that underlie mutagenesis and are relevant to disease and evolution in humans.
Germline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents–offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.05 × 10−8, well within the range of previous studies. We show that maternal age has a small but significant correlation with the total number of DNMs in the offspring after controlling for paternal age (0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the smaller and younger parental cohorts of earlier studies. Furthermore, while the total number of DNMs increases at a constant rate for paternal age, the contribution from the mother increases at an accelerated rate with age.These observations have implications related to the incidence of de novo mutations relating to maternal age.
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.
Purpose:To assess the potential of whole-genome sequencing (WGS) to replicate and augment results from conventional blood-based newborn screening (NBS). Methods:Research-generated WGS data from an ancestrally diverse cohort of 1,696 infants and both parents of each infant were analyzed for variants in 163 genes involved in disorders included or under discussion for inclusion in US NBS programs. WGS results were compared with results from state NBS and related follow-up testing.Results: NBS genes are generally well covered by WGS. There is a median of one (range: 0-6) database-annotated pathogenic variant in the NBS genes per infant. Results of WGS and NBS in detecting 28 state-screened disorders and four hemoglobin traits were concordant for 88.6% of true positives (n = 35) and 98.9% of true negatives (n = 45,757). Of the five infants affected with a state-screened disorder, WGS identified two whereas NBS detected four. WGS yielded fewer false positives than NBS (0.037 vs. 0.17%) but more results of uncertain significance (0.90 vs. 0.013%). Conclusion:WGS may help rule in and rule out NBS disorders, pinpoint molecular diagnoses, and detect conditions not amenable to current NBS assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.