Microbial burden of chronic wounds is believed to play an important role in impaired healing and development of infection-related complications. However, clinical cultures have little predictive value of wound outcomes, and culture-independent studies have been limited by cross-sectional design and small cohort size. We systematically evaluated the temporal dynamics of the microbiota colonizing diabetic foot ulcers (DFU), a common and costly complication of diabetes, and its association with healing and clinical complications. Dirichlet multinomial mixture modeling, Markov chain analysis, and mixed-effect models were used to investigate shifts in the microbiota over time and its associations with healing. Here we show to our knowledge previously unreported temporal dynamics of the chronic wound microbiome. Microbiota community instability was associated with faster healing and improved outcomes. DFU microbiota were found to exist in one of four community types that experienced frequent and non-random transitions. Transition patterns and frequencies associated with healing time. Exposure to systemic antibiotics destabilized the wound microbiota, rather than altering overall diversity or relative abundance of specific taxa. This study provides to our knowledge previously unreported evidence that the dynamic wound microbiome is indicative of clinical outcomes and may be a valuable guide for personalized management and treatment of chronic wounds.
Highlights d Wound microbiota was profiled longitudinally in patients with diabetic foot ulcers d Staphylococcus aureus strains were associated with poor outcomes d S. aureus and other wound isolates promoted differential wound healing responses d Debridement depleted anaerobic bacteria in wounds with favorable outcomes
E. coli ST131 is an important extraintestinal pathogen that can colonize the gastrointestinal tracts of humans and food animals. Here, we combined detection of accessory traits associated with avian adaptation (ColV plasmids) with high-resolution phylogenetics to quantify the portion of human infections caused by ST131 strains of food animal origin. Our results suggest that one ST131 sublineage—ST131-H22—has become established in poultry populations around the world and that meat may serve as a vehicle for human exposure and infection. ST131-H22 is just one of many E. coli lineages that may be transmitted from food animals to humans. Additional studies that combine detection of host-associated accessory elements with phylogenetics may allow us to quantify the total fraction of human extraintestinal infections attributable to food animal E. coli strains.
BackgroundThe skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota.ResultsA total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract.ConclusionsWith this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0404-9) contains supplementary material, which is available to authorized users.
Summary Skin microbiota can impact allergic and autoimmune responses, wound healing and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site, and to skin from co-housed naïve mice. This observation allowed us to test whether a preexisting dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naïve mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.