Significance
Sea stars inhabiting the Northeast Pacific Coast have recently experienced an extensive outbreak of wasting disease, leading to their degradation and disappearance from many coastal areas. In this paper, we present evidence that the cause of the disease is transmissible from disease-affected animals to apparently healthy individuals, that the disease-causing agent is a virus-sized microorganism, and that the best candidate viral taxon, the sea star-associated densovirus (SSaDV), is in greater abundance in diseased than in healthy sea stars.
Seagrass meadows form ecologically and economically valuable coastal habitat on every continental margin except the Antarctic, but their areal extent is declining by approximately 2-5 % per year. Seagrass wasting disease is a contributing factor in these declines, with the protist Labyrinthula identified as the etiologic agent. To help elucidate the role of Labyrinthula spp. in global seagrass declines, we surveyed roughly one fourth of all seagrass species to identify Labyrinthula diversity at the strain and/or species level, combining results from culturing methods and two common nuclear DNA markers: the ITS and 18S regions of the ribosomal RNA gene complex. After assaying a subset of the resulting isolates (of which 170 were newly sequenced), we produced a cladogenic context for putative seagrasspathogenic versus non-pathogenic Labyrinthula while also defining host and geographic ranges. Assays also suggest that pathogenicity is consistently high (when present; and, even when comparing susceptibility of US East-versus West Coast Zostera marina hosts) while virulence is variable, that some isolate-host combinations have the potential for host cross-infection, and that several modes of transmission can be effective. Taken together, these data provide additional means for delimiting putative species of Labyrinthula, suggesting at least five seagrass-pathogenic and perhaps ten or more non-pathogenic marine Bspecies^, yielding a working definition for ecologists and epidemiologists attempting to reconcile the sundry data related to seagrass wasting disease.
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.
Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013–15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006–15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington’s outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.