Cholera toxin (CT) is an AB, hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM, on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GMI pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GMI to cholera toxin thus resembles a 2-fingered grip: the Gal(P1-3)CalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTBs:GMl pentasaccharide complex described here provides a detailed view of a pr0tein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in OM,-mediated signal transduction.Keywords: cholera toxin; crystal structure; ganglioside GM1; sugar binding specificity Cholera is a severe disease that can lead to death within a few hours. The major clinical symptoms are caused by a toxin released after adhesion of the noninvasive Vibrio cholerue bacteria to the proximal small intestine of the host. Cholera toxin (CT) acts intracellularly to catalyze ADP-ribosylation of residue Arg 187 in the a subunit of the trimeric protein G,. The modified G,, loses its GTPase activity and remains constitutively in its GTP-bound state (Cassel & Pfeuffer, 1978), which in turn causes a continuous stimulation of adenylate cyclase. The resulting elevated levels of cyclic AMP lead to massive loss of fluids, the characteristic pathology of enterotoxigenic disease.Cholera toxin is an AB, hexamer consisting of 5 identical B subunits and a single A subunit. It is structurally and functionally related to a larger group of bacterial enterotoxins that includes the closely related Escherichia coli heat-labile enterotoxin (LT) as well as pertussis toxin, diphtheria toxin, shigella toxin, and Pseudomonas aeruginosa exotoxin A. In this class of tox- ins, the biological functions of target cell recognition and enzymatic activity are separated into distinct domains. In the case of CT and LT, cell recognition and binding are carried out by the ...
A method for isolation of large, translationally active RNA species is presented. The procedure involves homogenization of cells or tissues in 5 M guanidine monothiocyanate followed by direct precipitation of RNA from the guanidinium by 4 M LiCl. Modifications are described for use with tissue culture cells, yeast, tissues, or isolated nuclei. The advantages of the procedure include speed, simplicity, avoidance of an ultracentrifugation, and its applicability to large numbers of small samples. The procedure yields large mRNA precursors up to 10 kb and mRNA species which translate very well. However, small (less than 300 nucleotides) RNA species are recovered with a poor yield.
Peripartum cardiomyopathy (PPCM) is a life-threatening pregnancy-associated cardiomyopathy in previously healthy women. Although PPCM is driven in part by the 16-kDa N-terminal prolactin fragment (16K PRL), the underlying molecular mechanisms are poorly understood. We found that 16K PRL induced microRNA-146a (miR146a) expression in ECs, which attenuated angiogenesis through downregulation of NRAS. 16K PRL stimulated the release of miR-146a-loaded exosomes from ECs. The exosomes were absorbed by cardiomyocytes, increasing miR146a levels, which resulted in a subsequent decrease in metabolic activity and decreased expression of Erbb4, Notch1, and Irak1. Mice with cardiomyocyte-restricted Stat3 knockout (CKO mice) exhibited a PPCM-like phenotype and displayed increased cardiac miR-146a expression with coincident downregulation of Erbb4, Nras, Notch1, and Irak1. Blocking miR-146a with locked nucleic acids or antago-miRs attenuated PPCM in CKO mice without interrupting full-length prolactin signaling, as indicated by normal nursing activities. Finally, miR-146a was elevated in the plasma and hearts of PPCM patients, but not in patients with dilated cardiomyopathy. These results demonstrate that miR-146a is a downstream-mediator of 16K PRL that could potentially serve as a biomarker and therapeutic target for PPCM.
We have previously shown that the human genome includes hundreds of genes coding for putative factors related to the Krfippel zinc-ringer protein, which regulates
Angiogenesis, the process of development of a new microvasculature, is regulated by a balance of positive and negative factors. We show both in vivo and in vitro that the members of the human prolactin͞growth hormone family, i.e., human prolactin, human growth hormone, human placental lactogen, and human growth hormone variant are angiogenic whereas their respective 16-kDa N-terminal fragments are antiangiogenic. The opposite actions are regulated in part via activation or inhibition of mitogen-activated protein kinase signaling pathway. In addition, the N-terminal fragments stimulate expression of type 1 plasminogen activator inhibitor whereas the intact molecules have no effect, an observation consistent with the fragments acting via separate receptors. The concept that a single molecule encodes both angiogenic and antiangiogenic peptides represents an efficient model for regulating the balance of positive and negative factors controlling angiogenesis. This hypothesis has potential physiological importance for the control of the vascular connection between the fetal and maternal circulations in the placenta, where human prolactin, human placental lactogen, and human growth hormone variant are expressed.Prolactin (PRL), growth hormone (GH), and placental lactogen (PL) are homologous protein hormones believed to have arisen from a common ancestral gene (1). PRL participates in the regulation of reproduction, osmoregulation, and immunomodulation (2, 3) whereas GH is involved in regulating growth and morphogenesis (4). Human (h) GHs, unlike other mammalian GHs, bind to the PRL receptor and thus display PRL-like activity; however, hPRL does not bind to the hGH receptor (5). PRL and GH are produced mainly by the anterior pituitary in all vertebrates. PRL is expressed also in lymphocytes and in the decidua (6). The human placenta expresses two structural homologs of hGH, hPL and a variant of hGH (hGH-V) (7). hGH-V rather than pituitary hGH is believed to regulate maternal metabolism during the second half of pregnancy. hPL is somatotropic in fetal tissues and contributes to stimulating mammary cell proliferation (8). Rodent placentas express and secrete several proteins whose biological activities are more PRL-like than GH-like; these include proliferin (PLF) and a proliferin-related peptide (PRP) (9).Members of the PRL͞GH family and derived peptides have been reported to both stimulate and inhibit angiogenesis. PLF expressed during the first half of pregnancy in the mouse is angiogenic whereas PRP expressed later in gestation is antiangiogenic. These findings suggest that PLF and PRP might play a role in initiating and stopping placental neovascularization (9). Human GH was reported to be angiogenic in vitro (10) whereas both bovine and chicken GH were shown to be angiogenic in vivo (11). We have shown that the 16-kDa N-terminal fragments (16K) of rat PRL and hPRL are antiangiogenic both in vitro (12) and in vivo (13). Rat PRL is cleaved by cathepsin D (14) to yield a 16-kDa N-terminal fragment and a 7-kDa C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.