A digital focal plane array (DFPA) architecture has been developed that incorporates per-pixel full-dynamic-range analog-to-digital conversion and orthogonal-transfer-based realtime digital signal processing capability. Several long-wave infrared-optimized pixel processing focal plane readout integrated circuit (ROIC) designs have been implemented, each accommodating a 256 × 256 30-μm-pitch detector array. Demonstrated in this paper is the application of this DFPA ROIC architecture to problems of background pedestal mitigation, wide-field imaging, image stabilization, edge detection, and velocimetry. The DFPA architecture is reviewed, and pixel performance metrics are discussed in the context of the application examples. The measured data reported here are for DFPA ROICs implemented in 90-nm CMOS technology and hybridized to Hg x Cd 1−x Te (MCT) detector arrays with cutoff wavelengths ranging from 7 to 14.5 μm and a specified operating temperature of 60 K-80 K.
Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.