Invariant natural killer T (iNKT) cells are a subset of innate lymphocytes that recognize lipid antigens in the context of CD1d and mediate potent immune regulatory functions via the rapid production of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4). We investigated whether diverse Toll-like receptor (TLR) signals in myeloid dendritic cells (DCs) could differentially stimulate iNKT cells. Together with the lipopolysaccharide-detecting receptor TLR4, activation of the nucleic acid sensors TLR7 and TLR9 in DCs were particularly potent in stimulating iNKT cells to produce IFN-gamma, but not IL-4. iNKT cell activation in response to TLR9 stimulation required combined synthesis of type I interferon and de novo production of charged beta-linked glycosphingolipid(s) by DCs. In addition, DCs stimulated via TLR9 activated both iNKT cells and NK cells in vivo and protected mice against B16F10-induced melanoma metastases. These data underline the role of TLR9 in iNKT cell activation and might have relevance to infectious diseases and cancer.
Epidermal Langerhans cells (LCs) play a key role in immune defense mechanisms and in numerous immunological disorders. In this report, we show that percutaneous infection of C57BL/6 mice with the helminth parasite Schistosoma mansoni leads to the activation of LCs but, surprisingly, to their retention in the epidermis. Moreover, using an experimental model of LC migration induced by tumor necrosis factor (TNF)-α, we show that parasites transiently impair the departure of LCs from the epidermis and their subsequent accumulation as dendritic cells in the draining lymph nodes. The inhibitory effect is mediated by soluble lipophilic factors released by the parasites and not by host-derived antiinflammatory cytokines, such as interleukin-10. We find that prostaglandin (PG)D2, but not the other major eicosanoids produced by the parasites, specifically impedes the TNF-α–triggered migration of LCs through the adenylate cyclase–coupled PGD2 receptor (DP receptor). Moreover, the potent DP receptor antagonist BW A868C restores LC migration in infected mice. Finally, in a model of contact allergen-induced LC migration, we show that activation of the DP receptor not only inhibits LC emigration but also dramatically reduces the contact hypersensitivity responses after challenge. Taken together, we propose that the inhibition of LC migration could represent an additional stratagem for the schistosomes to escape the host immune system and that PGD2 may play a key role in the control of cutaneous immune responses.
Peroxisome proliferator‐activated receptor γ (PPARγ ), a member of the nuclear receptor superfamily, has recently been described as a modulator of macrophage functions and as an inhibitor of T cell proliferation. Here, we investigated the role of PPARγ in dendritic cells (DC), the most potent antigen‐presenting cells. We showed that PPARγ is highly expressed in immature human monocyte‐derived DC (MDDC) and that it may affect the immunostimulatory function of MDDC stimulated with lipopolysaccharide (LPS) or via CD40 ligand (CD40L). We found that the synthetic PPARγ agonist rosiglitazone (as well as pioglitazone and troglitazone) significantly increases on LPS‐ and CD40L‐activated MDDC, the surface expression of CD36 (by 184% and 104%, respectively) and CD86 (by 54% and 48%), whereas it reduces the synthesis of CD80 (by 42% and 42%). Moreover, activation of PPARγ resulted in a dramatic decreased secretion of the Th1‐promoting factor IL‐12 in LPS‐ and CD40L‐stimulated cells (by 47% and 62%), while the production of IL‐1β , TNF‐α , IL‐6 and IL‐10 was unaffected. Finally, PPARγ ligands down‐modulate the synthesis of IFN‐γ ‐inducible protein‐10 (recently termed as CXCL10) and RANTES (CCL5), both chemokines involved in the recruitment of Th1 lymphocytes (by 49% and 30%), but not the levels of the Th2 cell‐attracting chemokines,macrophage‐derived chemokine (CCL22) and thymus and activation regulated chemokine (CCL17), in mature MDDC. Taken together, our data suggest that activation of PPARγ in human DC may have an impact in the orientation of primary and secondary immune responses by favoring type 2 responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.