Purpose Biologic heterogeneity is a feature of diffuse large B-cell lymphoma (DLBCL), and the existence of a subgroup with poor prognosis and phenotypic proximity to Burkitt lymphoma is well known. Conventional cytogenetics identifies some patients with rearrangements of MYC and BCL2 and/or BCL6 (double-hit lymphomas) who are increasingly treated with more intensive chemotherapy, but a more biologically coherent and clinically useful definition of this group is required. Patients and Methods We defined a molecular high-grade (MHG) group by applying a gene expression–based classifier to 928 patients with DLBCL from a clinical trial that investigated the addition of bortezomib to standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. The prognostic significance of MHG was compared with existing biomarkers. We performed targeted sequencing of 70 genes in 400 patients and explored molecular pathology using gene expression signature databases. Findings were validated in an independent data set. Results The MHG group comprised 83 patients (9%), with 75 in the cell-of-origin germinal center B-cell-like group. MYC rearranged and double-hit groups were strongly over-represented in MHG but comprised only one half of the total. Gene expression analysis revealed a proliferative phenotype with a relationship to centroblasts. Progression-free survival rate at 36 months after R-CHOP in the MHG group was 37% (95% CI, 24% to 55%) compared with 72% (95% CI, 68% to 77%) for others, and an analysis of treatment effects suggested a possible positive effect of bortezomib. Double-hit lymphomas lacking the MHG signature showed no evidence of worse outcome than other germinal center B-cell-like cases. Conclusion MHG defines a biologically coherent high-grade B-cell lymphoma group with distinct molecular features and clinical outcomes that effectively doubles the size of the poor-prognosis, double-hit group. Patients with MHG may benefit from intensified chemotherapy or novel targeted therapies.
Summary Background Biologically distinct subtypes of diffuse large B-cell lymphoma can be identified using gene-expression analysis to determine their cell of origin, corresponding to germinal centre or activated B cell. We aimed to investigate whether adding bortezomib to standard therapy could improve outcomes in patients with these subtypes. Methods In a randomised evaluation of molecular guided therapy for diffuse large B-cell lymphoma with bortezomib (REMoDL-B), an open-label, adaptive, randomised controlled, phase 3 superiority trial, participants were recruited from 107 cancer centres in the UK (n=94) and Switzerland (n=13). Eligible patients had previously untreated, histologically confirmed diffuse large B-cell lymphoma with sufficient diagnostic material from initial biopsies for gene-expression profiling and pathology review; were aged 18 years or older; had ECOG performance status of 2 or less; had bulky stage I or stage II–IV disease requiring full-course chemotherapy; had measurable disease; and had cardiac, lung, renal, and liver function sufficient to tolerate chemotherapy. Patients initially received one 21-day cycle of standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP; rituximab 375 mg/m 2 , cyclophosphamide 750 mg/m 2 , doxorubicin 50 mg/m 2 , and vincristine 1·4 mg/m 2 [to a maximum of 2 mg total dose] intravenously on day 1 of the cycle, and prednisolone 100 mg orally once daily on days 1–5). During this time, we did gene-expression profiling using whole genome cDNA-mediated annealing, selection, extension, and ligation assay of tissue from routine diagnostic biopsy samples to determine the cell-of-origin subtype of each participant (germinal centre B cell, activated B cell, or unclassified). Patients were then centrally randomly assigned (1:1) via a web-based system, with block randomisation stratified by international prognostic index score and cell-of-origin subtype, to continue R-CHOP alone (R-CHOP group; control), or with bortezomib (RB-CHOP group; experimental; 1·3 mg/m 2 intravenously or 1·6 mg/m 2 subcutaneously) on days 1 and 8 for cycles two to six. If RNA extracted from the diagnostic tissues was of insufficient quality or quantity, participants were given R-CHOP as per the control group. The primary endpoint was 30-month progression-free survival, for the germinal centre and activated B-cell population. The primary analysis was on the modified intention-to-treat population of activated and germinal centre B-cell population. Safety was assessed in all participants who were given at least one dose of study drug. We report the progression-free survival and safety outcomes for patients in the follow-up phase after the required number of events occurred. This study was registered at ClinicalTrials.gov ,...
Using a Burkitt lymphoma-like gene expression signature, we recently defined a high-risk molecular high-grade (MHG) group mainly within germinal centre B-cell like diffuse large B-cell lymphomas (GCB-DLBCL), which was enriched for MYC/BCL2 double-hit (MYC/BCL2-DH). The genetic basis underlying MHG-DLBCL and their aggressive clinical behaviour remain unknown. We investigated 697 cases of DLBCL, particularly those with MYC/BCL2-DH (n = 62) by targeted sequencing and gene expression profiling. We showed that DLBCL with MYC/BCL2-DH, and those with BCL2 translocation, harbour the characteristic mutation signatures that are associated with follicular lymphoma and its high-grade transformation. We identified frequent MYC hotspot mutations that affect the phosphorylation site (T58) and its adjacent amino acids, which are important for MYC protein degradation. These MYC mutations were seen in a subset of cases with MYC translocation, but predominantly in those of MHG. The mutations were more frequent in double-hit lymphomas with IG as the MYC translocation partner, and were associated with higher MYC protein expression and poor patient survival. DLBCL with MYC/BCL2-DH and those with BCL2 translocation alone are most likely derived from follicular lymphoma or its precursor lesion, and acquisition of MYC pathogenic mutations may augment MYC function, resulting in aggressive clinical behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.