SUMMARY The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells, and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together our findings establish H3K36me2 as the primary product generated by NSD2, and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.
Purpose Detecting circulating plasma tumor DNA (ptDNA) in early stage cancer patients has the potential to change how oncologists recommend systemic therapies for solid tumors after surgery. Droplet digital polymerase chain reaction (ddPCR) is a novel sensitive and specific platform for mutation detection. Experimental Design In this prospective study, primary breast tumors and matched pre- and post-surgery blood samples were collected from early stage breast cancer patients (n=29). Tumors (n=30) were analyzed by Sanger sequencing for common PIK3CA mutations, and DNA from these tumors and matched plasma were then analyzed for PIK3CA mutations using ddPCR. Results Sequencing of tumors identified seven PIK3CA exon 20 mutations (H1047R) and three exon 9 mutations (E545K). Analysis of tumors by ddPCR confirmed these mutations and identified five additional mutations. Pre-surgery plasma samples (n=29) were then analyzed for PIK3CA mutations using ddPCR. Of the fifteen PIK3CA mutations detected in tumors by ddPCR, fourteen of the corresponding mutations were detected in pre-surgical ptDNA, while no mutations were found in plasma from patients with PIK3CA wild type tumors (sensitivity 93.3%, specificity 100%). Ten patients with mutation positive ptDNA pre-surgery had ddPCR analysis of post-surgery plasma, with five patients having detectable ptDNA post-surgery. Conclusions This prospective study demonstrates accurate mutation detection in tumor tissues using ddPCR, and that ptDNA can be detected in blood before and after surgery in early stage breast cancer patients. Future studies can now address whether ptDNA detected after surgery identifies patients at risk for recurrence, which could guide chemotherapy decisions for individual patients.
The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to ''knock in'' PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3 phosphorylation. Paradoxically, the GSK3 inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3 target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3 is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations.GSK3 ͉ lithium ͉ mTOR ͉ phosphatidylinositol 3-kinase ͉ cancer
Summary The Phosphoinositide 3-Kinase (PI3K) pathway regulates multiple steps in glucose metabolism but also cytoskeletal functions, such as cell movement and attachment. Here we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A and an increase in aldolase activity. Consistently, PI3K-, but not AKT-, SGK- or mTOR-inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point towards a master regulatory function of PI3K that integrates an epithelial cell’s metabolism and its form, shape and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.