Background No therapy is approved for COVID-19 pneumonia. The aim of this study was to assess the role of tocilizumab in reducing the risk of invasive mechanical ventilation and death in patients with severe COVID-19 pneumonia who received standard of care treatment.Methods This retrospective, observational cohort study included adults (≥18 years) with severe COVID-19 pneumonia who were admitted to tertiary care centres in Bologna and Reggio Emilia, Italy, between Feb 21 and March 24, 2020, and a tertiary care centre in Modena, Italy, between Feb 21 and April 30, 2020. All patients were treated with the standard of care (ie, supplemental oxygen, hydroxychloroquine, azithromycin, antiretrovirals, and low molecular weight heparin), and a non-randomly selected subset of patients also received tocilizumab. Tocilizumab was given either intravenously at 8 mg/kg bodyweight (up to a maximum of 800 mg) in two infusions, 12 h apart, or subcutaneously at 162 mg administered in two simultaneous doses, one in each thigh (ie, 324 mg in total), when the intravenous formulation was unavailable. The primary endpoint was a composite of invasive mechanical ventilation or death. Treatment groups were compared using Kaplan-Meier curves and Cox regression analysis after adjusting for sex, age, recruiting centre, duration of symptoms, and baseline Sequential Organ Failure Assessment (SOFA) score. FindingsOf 1351 patients admitted, 544 (40%) had severe COVID-19 pneumonia and were included in the study. 57 (16%) of 365 patients in the standard care group needed mechanical ventilation, compared with 33 (18%) of 179 patients treated with tocilizumab (p=0•41; 16 [18%] of 88 patients treated intravenously and 17 [19%] of 91 patients treated subcutaneously). 73 (20%) patients in the standard care group died, compared with 13 (7%; p<0•0001) patients treated with tocilizumab (six [7%] treated intravenously and seven [8%] treated subcutaneously). After adjustment for sex, age, recruiting centre, duration of symptoms, and SOFA score, tocilizumab treatment was associated with a reduced risk of invasive mechanical ventilation or death (adjusted hazard ratio 0•61, 95% CI 0•40-0•92; p=0•020). 24 (13%) of 179 patients treated with tocilizumab were diagnosed with new infections, versus 14 (4%) of 365 patients treated with standard of care alone (p<0•0001).Interpretation Treatment with tocilizumab, whether administered intravenously or subcutaneously, might reduce the risk of invasive mechanical ventilation or death in patients with severe COVID-19 pneumonia.
The immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients' T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1 + CD57 + exhausted T cells. Significant alterations exist also in several lineage-specifying transcription factors and chemokine receptors. Terminally differentiated T cells from patients proliferate less than those from healthy controls, whereas their mitochondria functionality is similar in CD4 + T cells from both groups. Patients display significant increases of proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2 cytokines, chemokines and galectins; their lymphocytes produce more tumor necrosis factor (TNF), interferon-γ, interleukin (IL)-2 and IL-17, with the last observation implying that blocking IL-17 could provide a novel therapeutic strategy for COVID-19.
Studies on the interactions between SARS‐CoV‐2 and humoral immunity are fundamental to elaborate effective therapies including vaccines. We used polychromatic flow cytometry, coupled with unsupervised data analysis and principal component analysis (PCA), to interrogate B cells in untreated patients with COVID‐19 pneumonia. COVID‐19 patients displayed normal plasma levels of the main immunoglobulin classes, of antibodies against common antigens or against antigens present in common vaccines. However, we found a decreased number of total and naïve B cells, along with decreased percentages and numbers of memory switched and unswitched B cells. On the contrary, IgM+ and IgM− plasmablasts were significantly increased. In vitro cell activation revealed that B lymphocytes showed a normal proliferation index and number of dividing cells per cycle. PCA indicated that B‐cell number, naive and memory B cells but not plasmablasts clustered with patients who were discharged, while plasma IgM level, C‐reactive protein, D‐dimer, and SOFA score with those who died. In patients with pneumonia, the derangement of the B‐cell compartment could be one of the causes of the immunological failure to control SARS‐Cov2, have a relevant influence on several pathways, organs and systems, and must be considered to develop vaccine strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.