Here we demonstrate that the ABC transporter ABCG1 plays a critical role in lipid homeostasis by controlling both tissue lipid levels and the efflux of cellular cholesterol to HDL. Targeted disruption of Abcg1 in mice has no effect on plasma lipids but results in massive accumulation of both neutral lipids and phospholipids in hepatocytes and in macrophages within multiple tissues following administration of a high-fat and -cholesterol diet. In contrast, overexpression of human ABCG1 protects murine tissues from dietary fat-induced lipid accumulation. Finally, we show that cholesterol efflux to HDL specifically requires ABCG1, whereas efflux to apoA1 requires ABCA1. These studies identify Abcg1 as a key gene involved in both cholesterol efflux to HDL and in tissue lipid homeostasis.
Background-These studies were designed to determine the mechanism of action of an oral apolipoprotein (apo) A-I mimetic peptide, D-4F, which previously was shown to dramatically reduce atherosclerosis in mice. Methods and Results-Twenty minutes after 500 g of D-4F was given orally to apoE-null mice, small cholesterolcontaining particles (CCPs) of 7 to 8 nm with pre- mobility and enriched in apoA-I and paraoxonase activity were found in plasma.
The clinical events resulting from atherosclerosis are directly related to the oxidation of lipids in LDLs that become trapped in the extracellular matrix of the subendothelial space. These oxidized lipids activate an NF kappa B-like transcription factor and induce the expression of genes containing NF kappa B binding sites. The protein products of these genes initiate an inflammatory response that initially leads to the development of the fatty streak. The progression of the lesion is associated with the activation of genes that induce arterial calcification, which changes the mechanical characteristics of the artery wall and predisposes to plaque rupture at sites of monocytic infiltration. Plaque rupture exposes the flowing blood to tissue factor in the lesion, and this induces thrombosis, which is the proximate cause of the clinical event. There appear to be potent genetically determined systems for preventing lipid oxidation, inactivating biologically important oxidized lipids, and/or modulating the inflammatory response to oxidized lipids that may explain the differing susceptibility of individuals and populations to the development of atherosclerosis. Enzymes associated with HDL may play an important role in protecting against lipid oxidation in the artery wall and may account in part for the inverse relation between HDL and risk for atherosclerotic clinical events.
Recent data support the hypothesis that the fatty streak develops in response to specific phospholipids contained in LDL that become trapped in the artery wall and become oxidized as a result of exposure to the oxidative waste of the artery wall cells. The antioxidants present within both LDL and the microenvironments in which LDL is trapped function to prevent the formation of these biologically active, oxidized lipids. Enzymes associated with LDL and HDL (eg, platelet activating factor acetylhydrolase) or with HDL alone (eg, paraoxonase) destroy these biologically active lipids. The regulation and expression of these enzymes are determined genetically and are also significantly modified by environmental influences, including the acute-phase response or an atherogenic diet. The balance of these multiple factors leads to an induction or suppression of the inflammatory response in the artery wall and determines the clinical course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.