Widespread use of antibiotics may be important in the spread of antimicrobial resistance. We estimated the proportion of Lao in- and outpatients who had taken antibiotics before medical consultation by detecting antibiotic activity in their urine added to lawns of Bacillus stearothermophilus, Escherichia coli, and Streptococcus pyogenes. In the retrospective (N = 2,058) and prospective studies (N = 1,153), 49.7% (95% confidence interval [CI] = 47.4–52.0) and 36.2% (95% CI = 33.4–38.9), respectively, of Vientiane patients had urinary antibiotic activity detected. The highest frequency of estimated antibiotic pre-treatment was found in patients recruited with suspected central nervous system infections and community-acquired septicemia (both 56.8%). In Vientiane, children had a higher frequency of estimated antibiotic pre-treatment than adults (60.0% versus 46.5%; P < 0.001). Antibiotic use based on patients histories was significantly less frequent than when estimated from urinary antibiotic activity (P < 0.0001).
Melioidosis, a severe infection with the environmental bacterium Burkholderia pseudomallei, is being recognised increasingly frequently. What determines its uneven distribution within endemic areas is poorly understood. We cultured soil from a rice field in Laos for B. pseudomallei at different depths on 4 occasions over a 13-month period. We also measured physical and chemical parameters in order to identify associated characteristics. Overall, 195 of 653 samples (29.7%) yielded B. pseudomallei. A higher prevalence of B. pseudomallei was found at soil depths greater than the 30 cm currently recommended for B. pseudomallei environmental sampling. B. pseudomallei was associated with a high soil water content and low total nitrogen, carbon and organic matter content. Our results suggested that a sampling grid of 25 five metre square quadrats (i.e. 25 × 25 m) should be sufficient to detect B. pseudomallei at a given location if samples are taken at a soil depth of at least 60 cm. However, culture of B. pseudomallei in environmental samples is difficult and liable to variation. Future studies should both rely on molecular approaches and address the micro-heterogeneity of soil when investigating physico-chemical associations with the presence of B. pseudomallei.
Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseudomallei worldwide and within countries where it is endemic, such as the Lao People's Democratic Republic (Laos), remains unclear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomallei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detection by quantitative real-time PCR (qPCR) was attempted after DNA extraction directly from soil or water samples or after an overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture techniques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.