Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen.antigen discovery ͉ melioidosis ͉ diagnostic ͉ antigen prediction
The eradication of smallpox by vaccination with vaccinia virus was probably one of the greatest achievements of vaccinology. However, the immunological basis of this protection is not fully understood. To this end, we have used protein microarrays of the vaccinia (Western Reserve, WR) proteome to profile antibody reactivities after primary infection or boosting with the licensed smallpox vaccine, Dryvax ® , and with archival convalescent smallpox sera. Some 25 antigens were consistently recognized by Dryvax ® sera, of which half were envelope proteins (notably, H3, A13, B5, and D8). The remainder consisted mainly of core proteins (e.g. A10, L4, and I1), proteins involved in intracellular morphogenesis (A11, D13), and the A-type inclusion protein, WR148. Convalescent smallpox sera also detected vaccinia antigens on the array, consistent with the notion that there is serological cross-reactivity between these two orthopox species that underlies protection. Moreover, the profiles of immunodominant antigens recognized by variola-infected individuals and Dryvax ® vaccinees were indistinguishable. This is the first description of antibody-specificity profiles induced after smallpox infection. The array data indicate that a significant component of the antibody response is not involved in virus neutralization, although these antigens should be considered alongside the envelope proteins as potential candidates for diagnostic and vaccine applications.
Q fever is a widespread zoonosis caused by Coxiella burnetii. Diagnosis of Q fever is usually based on serological testing of patient serum. The diagnostic antigen of test kits is formalin-fixed phase I and phase II organisms of the Nine Mile reference strain. Deficiencies of this antigen include (i) potential for crossreactivity with other pathogens; (ii) an inability to distinguish between C. burnetii strains; and (iii) a need to propagate and purify C. burnetii, a difficult and potentially hazardous process. Consequently, there is a need for sensitive and specific serodiagnostic tests utilizing defined antigens, such as recombinant C. burnetii protein(s). Here we describe the use of a C. burnetii protein microarray to comprehensively identify immunodominant antigens recognized by antibody in the context of human C. burnetii infection or vaccination. Transcriptionally active PCR products corresponding to 1,988 C. burnetii open reading frames (ORFs) were generated. Full-length proteins were successfully synthesized from 75% of the ORFs by using an Escherichia coli-based in vitro transcription and translation system (IVTT). Nitrocellulose microarrays were spotted with crude IVTT lysates and probed with sera from acute Q fever patients and individuals vaccinated with Q-Vax. Immune sera strongly reacted with approximately 50 C. burnetii proteins, including previously identified immunogens, an ankyrin repeat-domain containing protein, and multiple hypothetical proteins. Recombinant protein corresponding to selected array-reactive antigens was generated, and the immunoreactivity was confirmed by enzyme-linked immunosorbent assay. This sensitive and high-throughput method for identifying immunoreactive C. burnetii proteins will aid in the development of Q fever serodiagnostic tests based on recombinant antigen.Coxiella burnetii is a gram-negative obligate intracellular bacterium and the etiological agent of the zoonosis Q ("query") fever. Human populations most at risk for infection are those routinely exposed to infected animals and their products. The organism has a diverse animal reservoir that includes domestic livestock such as dairy cattle, goats, and sheep. Chronically infected dairy cattle shed C. burnetii in milk and other secretions, and the products of livestock parturition can deposit tremendous numbers of the organisms into the environment. The insidious nature of C. burnetii is further exacerbated by the organism's aerosol route of infection, low infectious dose, and pronounced extracellular stability. Q fever most commonly manifests as a self-limiting but debilitating influenza-like illness that includes signs and/or symptoms of prolonged high fever, headache, and malaise. Chronic infection can occur, normally in predisposed individuals, that typically presents as a life-threatening endocarditis (reviewed in reference 17).Two advancements that would aid in control of Q fever are (i) a specific and sensitive serodiagnostic test based on recombinant antigen and (ii) an efficacious and safe vaccine that d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.