A high conductive 2D COF polyporphyrin (TThPP) linked by 4-thiophenephenyl groups was synthesized through an in situ chemical oxidative polymerization on the surface of copper foil. The TThPP films were used as the anode of lithium-ion battery, which exhibited high specific capacities, excellent rate performances, and long cycle lives due to the alignment of 2D polyporphyrin nanosheets, and they (i) can highly efficiently adsorb Li atoms, (ii) have short-ended paths for the fast lithium ion diffusion, and (iii) open nanopores holding electrolyte. The reversible capacity is up to 666 mAh/g. This is the first example of an organic 2D COF for an anode of lithium-ion battery and represents an important step toward the use of COFs in the next-generation high-performance lithium-ion battery.
The qualitative and quantitative nitrogen-doping strategy for carbon materials is reported here. Novel porous nanocarbon networks pyrimidine-graphdiyne (PM-GDY) and pyridine-graphdiyne (PY-GDY) films with large areas were successfully prepared. These films are self-supported, uniform, continuous, flexible, transparent, and quantitively doped with merely pyridine-like nitrogen (N) atoms through the facile chemical synthesis route. Theoretical predictions imply these N doped carbonaceous materials are much favorable for storing lithium (Li)-ions since the pyridinic N can enhance the interrelated binding energy. As predicted, PY-GDY and PM-GDY display excellent electrochemical performance as anode materials of LIBs, such as the superior rate capability, the high capacity of 1168 (1165) mA h g at current density of 100 mA g for PY-GDY (PM-GDY), and the excellent stability of cycling for 1500 (4000) cycles at 5000 mA g for PY-GDY (PM-GDY).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.