We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195-1380 pc cm −3 . We detect two bursts from three of the new sources, three bursts from four of the new sources, four bursts from one new source, and five bursts from one new source. We determine sky coordinates of all sources with uncertainties of ∼10′. We detect Faraday rotation measures (RMs) for two sources, with values −20(1) and −499.8(7) radm −2 , that are substantially lower than the RM derived from bursts emitted by FRB 121102. We find that the DM distribution of our events, combined with the nine other repeaters discovered by CHIME/FRB, is indistinguishable from that of thus far non-repeating CHIME/FRB events. However, as previously reported, the burst widths appear statistically significantly larger than the thus far non-repeating CHIME/FRB events, further supporting the notion of inherently different emission mechanisms and/or local environments. These results are consistent with previous work, though are now derived from 18 repeating sources discovered by CHIME/FRB during its first year of operation. We identify candidate galaxies that may contain FRB 190303.J1353+48 (DM=222.4 pc cm −3 ).
Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances 1 . Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events [2][3][4] . Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days 2, 5-7 , these bursts have hitherto been observed to appear sporadically, and though clustered 8 , without a regular pattern. Here we report the detection of a 16.35 ± 0.18 day periodicity from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB) 4, 9 . In 28 bursts recorded from 16th September 2018 through 30th October 2019, we find that bursts arrive in a 4.0-day phase window, with some cycles showing no bursts, and some showing multiple bursts, within CHIME's limited daily exposure. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes.Last year the CHIME/FRB collaboration reported the discovery of eight new repeating FRB sources 4 , including FRB 180916.J0158+65, which was recently localized to a star-forming region in a nearby massive spiral galaxy at redshift 0.0337±0.0002 10 . From September 2018 to November 2019, CHIME/FRB has detected a total of 28 bursts from FRB 180916.J0158+65, which remains the most active source from this recent CHIME/FRB repeater sample. The barycentric arrival times for the 28 bursts (including those has been published before) from FRB 180916.J0158+65, corrected for delays from pulse dispersion, are listed in Extended Data Table 1.To search for periodicity, the burst arrival times (spanning a 400-day time range) were folded with different periods from 1.57 to 62.8 days (see Methods), with a Pearson's χ 2 test applied to each resulting profile with 8 phase bins 11 . A reduced χ 2 1 with respect to a uniform distribution indicates a periodicity unlikely to arise by chance. Furthermore, to account for the possible non-Poissonian statistics of the bursts 12 , we have applied the search with different weighting schemes that consider clustered bursts of different time range to be correlated events (see Methods).Searches with different weightings return periodograms of similar shape and have the same primary peak with significance varying between 3.5 − 8σ. As an example, the reduced χ 2 versus period using a weighting that counts only active days instead of individual events is shown in Figure 1a. A distinct peak is detected at 16.35 ± 0.18 days, with
We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of α = − 1.40 ± 0.11 ( stat. ) − 0.09 + 0.06 ( sys. ) , consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find that α is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of [ 820 ± 60 ( stat. ) − 200 + 220 ( sys. ) ] / sky / day above a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.