Background Cardiac muscle hypercontractility is a key pathophysiological abnormality in hypertrophic cardiomyopathy, and a major determinant of dynamic left ventricular outflow tract (LVOT) obstruction. Available pharmacological options for hypertrophic cardiomyopathy are inadequate or poorly tolerated and are not disease-specific. We aimed to assess the efficacy and safety of mavacamten, a first-in-class cardiac myosin inhibitor, in symptomatic obstructive hypertrophic cardiomyopathy. Methods In this phase 3, randomised, double-blind, placebo-controlled trial (EXPLORER-HCM) in 68 clinical cardiovascular centres in 13 countries, patients with hypertrophic cardiomyopathy with an LVOT gradient of 50 mm Hg or greater and New York Heart Association (NYHA) class II-III symptoms were assigned (1:1) to receive mavacamten (starting at 5 mg) or placebo for 30 weeks. Visits for assessment of patient status occurred every 2-4 weeks. Serial evaluations included echocardiogram, electrocardiogram, and blood collection for laboratory tests and mavacamten plasma concentration. The primary endpoint was a 1•5 mL/kg per min or greater increase in peak oxygen consumption (pVO 2) and at least one NYHA class reduction or a 3•0 mL/kg per min or greater pVO 2 increase without NYHA class worsening. Secondary endpoints assessed changes in post-exercise LVOT gradient, pVO 2 , NYHA class, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score (KCCQ-CSS), and Hypertrophic Cardiomyopathy Symptom Questionnaire Shortness-of-Breath subscore (HCMSQ-SoB). This study is registered with ClinicalTrials.gov, NCT03470545.
Aims
This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model.
Methods and results
Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27–55]. During a median follow-up of 4.3 years (IQR 1.7–7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78–0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61–0.75).
Conclusion
This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.