Jerusalem artichoke (JA) is widely known to have inulin-rich tubers. However, its fresh aerial biomass produces significant levels of leaf protein and economic bioactive phytochemicals. We have characterized leaf protein concentrate (JAPC) isolated from green biomass of three Jerusalem artichoke clones, Alba, Fuseau, and Kalevala, and its nutritional value for the human diet or animal feeding. The JAPC yield varied from 28.6 to 31.2 g DM kg−1 green biomass with an average total protein content of 33.3% on a dry mass basis. The qualitative analysis of the phytochemical composition of JAPC was performed by ultra-high performance liquid chromatography-electrospray ionization-Orbitrap/mass spectrometry analysis (UHPLC-ESI-ORBITRAP-MS/MS). Fifty-three phytochemicals were successfully identified in JAPC. In addition to the phenolic acids (especially mono- and di-hydroxycinnamic acid esters of quinic acids) several medically important hydroxylated methoxyflavones, i.e., dimethoxy-tetrahydroxyflavone, dihydroxy-methoxyflavone, hymenoxin, and nevadensin, were detected in the JAPC for the first time. Liquiritigenin, an estrogenic-like flavanone, was measured in the JAPC as well as butein and kukulkanin B, as chalcones. The results also showed high contents of the essential amino acids and polyunsaturated fatty acids (PUFAs; 66-68%) in JAPC. Linolenic acid represented 39–43% of the total lipid content; moreover, the ratio between ω-6 and ω-3 fatty acids in the JAPC was ~0.6:1. Comparing the JA clones, no major differences in phytochemicals, fatty acid, or amino acid compositions were observed. This paper confirms the economic and nutritional value of JAPC as it is not only an alternative plant protein source but also as a good source of biological valuable phytochemicals.
The present study evaluates the green biomass of Jerusalem artichoke (JA) as an alternative green protein. A leaf protein concentrate (LPC) was prepared from leafy shoots using biotechnological methods. Seven clones were compared to assess the importance of the genetic basis of JA, and alfalfa served as the control. The LPC content of JA was an average 39 g kg −1 of fresh biomass, while that of alfalfa was 32 g kg −1. The JA can produce up to 936 kg of protein ha −1 year −1 without fertilization under rainfed conditions. The crude protein content of the LPC varied from 24.2 to 31.4 m/m%, depending on clones and harvesting time, which was comparable to that of alfalfa LPC (~32.3%). The amino acid profile of the LPC of JA, particularly of the essential amino acids, was similar to alfalfa and soybean. In addition, our results confirmed that the polyunsaturated fatty acid (PUFA) content varied between 64 and 68% in the LPC fraction, regardless of the clone that was used, with linoleic acid and linolenic acid being the predominant PUFAs. In addition, unlike alfalfa, the content of arachidonic acid was 0.5% in the JA LPC. The tuber yield was significantly reduced because of the repeated harvesting of the shoot parts; however, the tubers obtained were sufficient to regenerate the plantation in the subsequent year, thus ensuring the renewable ability and sustainability of the green biomass of JA.
The main objective of this study was to increase the economic value of broccoli green agro-waste using three wet fractionation methods in the shadow of green biorefinery and the circular economy. Product candidates were obtained directly by using a mechanical press, and indirectly by using microwave coagulation or via lactic acid fermentation of green juice. The leaf protein concentrates (LPC) fractions displayed significantly higher dry matter content and crude protein content (34–39 m/m% on average) than the green juice fraction (27.4 m/m% on average), without considerable changes in the amino acids composition ratio. UHPLC-ESI-ORBITRAP-MS/MS analysis showed that kaemferol and quercetin are the most abundant flavonols, forming complexes with glycosides and hydroxycinnamic acids in green juice. Lacto-ermentation induced a considerable increase in the quantity of quercetin (48.75 μg·g−1 dry weight) and kaempferol aglycons (895.26 μg·g−1 dry weight) of LPC. In contrast, chlorogenic acid isomers and sulforaphane disappeared from LPC after lactic acid fermentation, while microwave treatment did not cause significant differences. These results confirm that both microwave treatment and lacto-fermentation coagulate and concentrate most of the soluble proteins. Also, these two processes affect the amount of valuable phytochemicals differently, so it should be considered when setting the goals.
Background and Aims Wet processed alfalfa-based products can provide high-quality concentrated protein, also contain nutrients and phytochemicals. Agronomic fortification can increase selenium (Se) incorporation into green biomass. For this reason, the aim was to investigate how different forms of Se are incorporated into the green biomass of multiple-harvest alfalfa and how they affect the chemical quality of the processed product candidates. Methods In this research, alfalfa was enriched with three forms of selenium at different concentrations [selenate (Se(VI)); selenite (Se(IV)); and red elemental Se (Se0)]. The fortified green biomass was fractionated into leaf protein concentrate (LPC), fiber and phytoserum, and changes in selenium content and speciation, protein and phytochemical composition were determined. Results Total Se content in alfalfa fractions drastically reduced within the four consecutive harvests, particularly for Se(VI) and Se(IV) forms, and significantly varied according to the Se treatments. Selenomethionine (SeMet) was the predominant organic Se species in LPC (35.7–246.0 µg g −1 DW) and fiber (9.0- 47.7 µg g −1 DW) fractions. Se-fortification induced considerable changes in the crude protein of LPC, which varied between 29—45 (m/m)%. Phytochemical composition markedly varied among Se-treatments. Besides several flavonoids, aglycones and glycosyl derivatives, apigenin glucuronide, and apigenin were the most abundant with a concentration up to 170.85 µg g −1 DW. Medicagenic acid concentration was below 1.86 µg g −1 DW in LPC. Conclusions Se-enhanced alfalfa green biomass could provide functional products, such as LPC, for human and animal consumption with enhanced nutritional value, including Se, protein, and phytochemical contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.