Globin-coupled sensors (GCS) are heme-binding signal transducers in Bacteria and Archaea where an N-terminal globin controls the activity of a variable C-terminal domain. Here we report that BpeGReg, a globin-coupled diguanylate cyclase (GCDC) from the whooping-cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3’–5’)-cyclic diguanosine monophosphate (c-di-GMP) upon oxygen binding. Expression of BpeGReg in Salmonella typhimurium enhances biofilm formation, while knockout of the BpeGReg gene of B. pertussis results in decreased biofilm formation. These results represent the first identification of a gaseous ligand for any diguanylate cyclase and provide definitive experimental evidence that a globin-coupled sensor regulates c-di-GMP synthesis and biofilm formation. We propose that the synthesis of c-di-GMP by globin sensors is a widespread phenomenon in bacteria.
We report the complete genome sequence of the deep-sea ␥-proteobacterium, Idiomarina loihiensis, isolated recently from a hydrothermal vent at 1,300-m depth on the Lo ihi submarine volcano, Hawaii. The I. loihiensis genome comprises a single chromosome of 2,839,318 base pairs, encoding 2,640 proteins, four rRNA operons, and 56 tRNA genes. A comparison of I. loihiensis to the genomes of other ␥-proteobacteria reveals abundance of amino acid transport and degradation enzymes, but a loss of sugar transport systems and certain enzymes of sugar metabolism. This finding suggests that I. loihiensis relies primarily on amino acid catabolism, rather than on sugar fermentation, for carbon and energy. Enzymes for biosynthesis of purines, pyrimidines, the majority of amino acids, and coenzymes are encoded in the genome, but biosynthetic pathways for Leu, Ile, Val, Thr, and Met are incomplete. Auxotrophy for Val and Thr was confirmed by in vivo experiments. The I. loihiensis genome contains a cluster of 32 genes encoding enzymes for exopolysaccharide and capsular polysaccharide synthesis. It also encodes diverse peptidases, a variety of peptide and amino acid uptake systems, and versatile signal transduction machinery. We propose that the source of amino acids for I. loihiensis growth are the proteinaceous particles present in the deep sea hydrothermal vent waters. I. loihiensis would colonize these particles by using the secreted exopolysaccharide, digest these proteins, and metabolize the resulting peptides and amino acids. In summary, the I. loihiensis genome reveals an integrated mechanism of metabolic adaptation to the constantly changing deep-sea hydrothermal ecosystem.hydrothermal vent
Onchocerciasis, also known as “river blindness”, is a neglected tropical disease infecting millions of people mainly in Africa and the Middle East but also in South America and Central America. Disease infectivity initiates from the filarial parasitic nematode Onchocerca volvulus , which is transmitted by the blackfly vector Simulium sp. carrying infectious third-stage larvae. Ivermectin has controlled transmission of microfilariae, with an African Program elimination target date of 2025. However, there is currently no point-of-care diagnostic that can distinguish the burden of infection—including active and/or past infection—and enable the elimination program to be effectively monitored. Here, we describe how liquid chromatography-MS–based urine metabolome analysis can be exploited for the identification of a unique biomarker, N -acetyltyramine- O ,β-glucuronide (NATOG), a neurotransmitter-derived secretion metabolite from O. volvulus . The regulation of this tyramine neurotransmitter was found to be linked to patient disease infection, including the controversial antibiotic doxycycline treatment that has been shown to both sterilize and kill adult female worms. Further clues to its regulation have been elucidated through biosynthetic pathway determination within the nematode and its human host. Our results demonstrate that NATOG tracks O. volvulus metabolism in both worms and humans, and thus can be considered a host-specific biomarker for onchocerciasis progression. Liquid chromatography-MS–based urine metabolome analysis discovery of NATOG not only has broad implications for a noninvasive host-specific onchocerciasis diagnostic but provides a basis for the metabolome mining of other neglected tropical diseases for the discovery of distinct biomarkers and monitoring of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.