Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1 -4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5 -9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11 , 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10 −3 ). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10 −3 ). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10 −6 ). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.ASDs, including autism, are neurodevelopmental disorders characterized by impairments in social and communication skills, as well as stereotyped and repetitive behaviours and/or a restricted range of interests. Current prevalence estimates in the United States are 0.1-0.2% for autism and 0.6% for ASDs 1,2 .Linkage and candidate gene association studies have implicated several chromosomal regions in autism 3,4 . However, positive findings in one study often fail to replicate in other studies, and a consistent picture of susceptibility loci in autism is still lacking. Some telling clues about ASD genetics arose from recent studies on CNVs 5 , including the association of de novo CNVs with ASDs 6 . Although de novo CNVs that disrupt specific genes may contribute to the pathogenesis of ASDs, heritable CNVs are much more common but have been less studied as risk factors of ASDs. A family-based genome-wide linkage and CNV analysis by the Autism Genome Project Consortium using Affymetrix 10K single nucleotide polymorphism (SNP) arrays implicated chromosome 11p12-13 and neurexin 1 (NRXN1) as candidate loci 7 . A study using the Affymetrix 500K SNP array in a Canadian population reported 277 rare CNVs that were only observed in ASD patients but not in 1,652 healthy controls or in the Database of Genomic Variants 8 . Furthermore, 16p11.2 deletions and Glessner et al.Page 2 Nature. Author manuscript; available in PMC 2010 August 23. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscri...
SummaryWe present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most of the risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In human cortex single-cell gene expression data, expression of risk genes is enriched in both excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory/inhibitory imbalance underlying ASD.
Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10−8. When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10−8 threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
We assessed anxiety consistent (i.e. “traditional”) and inconsistent (i.e. “atypical”) with diagnostic and statistical manual (DSM) definitions in autism spectrum disorder (ASD). Differential relationships between traditional anxiety, atypical anxiety, child characteristics, anxiety predictors and ASD-symptomology were explored. Fifty-nine participants (7–17 years, Mage=10.48 years; IQ>60) with ASD and parents completed semi-structured interviews, self- and parent-reports. Seventeen percent of youth presented with traditional anxiety, 15% with atypical anxiety, and 31% with both. Language ability, anxious cognitions and hypersensitivity predicted traditional anxiety, whereas traditional anxiety and ASD symptoms predicted atypical anxiety. Findings suggest youth with ASD express anxiety in ways similar and dissimilar to DSM definitions. Similarities support the presence of comorbid anxiety disorders in ASD. Whether dissimilarities are unique to ASD requires further examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.