The presented work focuses on the investigations of a metallo-porphyrin and its gasochromic behavior to different gases. Gasochromic materials change their color while they are exposed to a certain gas. So they offer the possibility to develop highly selective chemical gas sensors and gas sensing systems. The focus of this work is the characterization of the metallo-porphyrin 5, 10, 15, 20-tetraphenylporphyrin-zinc (ZnTPP). Nonetheless, there is a wide range of other possible metallo-porphyrins. When embedded into a polymeric matrix (PVC) a color change to the toxic gas NO2 can be detected. To develop a stand-alone gas sensor, the porphyrin/PVC matrix is deposited onto a planar optical waveguide. The color change of the porphyrin dye can be detected in the evanescent field of the optical w aveguide. Therefore, the light of a high power LED is coupled into the waveguide. The color change of the porphyrin is detectable with photodiodes as a variation of the out-coupled light intensity. The sensor shows no unwished sensitivities to CO2 and CO and only low to NH3. NO2 is detectable with a resolution of 1 ppm
The integration of a solid state gas sensor of the metal oxide sensor type into CMOS technology still is a challenge because of the high temperatures during metal oxide annealing and sensor operation that do not comply with silicon device stability. In the presence of an external electric field sensor sensitivity can be controlled through a change of the Fermi energy level and consequently it is possible to reduce the operation temperature. Based in this effect, a novel field effect gas sensor was developed resembling a reversed insulated gate field effect transistor (IGFET) with the thickness of gas sensing layer in the range of the Debye length (L-D). Under these conditions the controlling electrical field reaches the sensitive surface and a modulation of the Fermi energy level occurs, producing an effective control of gas sensitivity and sensor response. In this paper several aspects are treated, like technological fabrication process, complete sensor characterization by means of an electrical model and sensor response measurements. Other effects as base-line drift effects and layer thickness implications also are studied
A dual frequency comb spectrometer is realized by electro-optic modulation of a 1550 nm laser and subsequent conversion to the mid-infrared by difference-frequency generation (DFG). Using an optical parametric oscillator for the DFG the combs can be tuned from 3 µm to 4.7 µm with 440 comb modes covering 220 GHz (> 6 cm -1 ). Trace gas detection of nitrous oxide, carbon dioxide and methane is demonstrated with a 7.2-m-multi-pass cell while a sufficiently low noise-equivalent absorbance is reached in already 1 s. The bandwidth normalized noise-equivalent-absorption coefficient is consistently below 2.8 x 10 -6 Hz -1/2 cm -1 while the precision of the determined concentrations is better 2 % Hz -1/2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.