BACKGROUND AND OBJECTIVE Surveillance for laboratory-confirmed influenza-associated pediatric deaths since 2004 has shown that most deaths occur in unvaccinated children. We assessed whether influenza vaccination reduced the risk of influenza-associated death in children and adolescents. METHODS We conducted a case-cohort analysis comparing vaccination uptake among laboratory-confirmed influenza-associated pediatric deaths with estimated vaccination coverage among pediatric cohorts in the United States. Case vaccination and high-risk status were determined by case investigation. Influenza vaccination coverage estimates were obtained from national survey data or a national insurance claims database. We estimated odds ratios (OR) from logistic regression comparing odds of vaccination among cases with odds of vaccination in comparison cohorts. We used Bayesian methods to compute 95% credible intervals for vaccine effectiveness (VE), calculated as (1 – OR) × 100. RESULTS From August 2010 through July 2014, 358 laboratory-confirmed influenza-associated pediatric deaths were reported among children aged 6 months through 17 years. Vaccination status was determined for 291 deaths; 75 (26%) received vaccine before illness onset. Average vaccination coverage in survey cohorts was 48%. Overall VE against death was 65% (95% credible interval: 54–73). Among 153 deaths in children with underlying high-risk medical conditions, 47 (31%) were vaccinated. VE among children with high-risk conditions was 51% (95% credible interval: 31-67), versus 65% (95% credible interval: 47-78) among children without high-risk conditions. CONCLUSIONS Influenza vaccination was associated with reduced risk of laboratory-confirmed influenza-associated pediatric death. Increasing influenza vaccination could prevent influenza-associated deaths among children and adolescents.
We estimated the effectiveness of four monovalent pandemic influenza A (H1N1) vaccines (three unadjuvanted inactivated, one live attenuated) available in the U.S. during the pandemic. Patients with acute respiratory illness presenting to inpatient and outpatient facilities affiliated with four collaborating institutions were prospectively recruited, consented, and tested for influenza. Analyses were restricted to October 2009 through April 2010, when pandemic vaccine was available. Patients testing positive for pandemic influenza by real-time RT-PCR were cases; those testing negative were controls. Vaccine effectiveness was estimated in logistic regression models adjusted for study community, patient age, timing of illness, insurance status, enrollment site, and presence of high-risk medical conditions. Pandemic virus was detected in 1,011 (15%) of 6,757 enrolled patients. Fifteen (1%) of 1,011 influenza positive cases and 1,042 (18%) of 5,746 test-negative controls had record-verified pandemic vaccination >14 days prior to illness onset. Adjusted effectiveness (95% confidence interval) for pandemic vaccines combined was 56% (23%, 75%). Adjusted effectiveness for inactivated vaccines alone (79% of total) was 62% (25%, 81%) overall and 32% (−92%, 76%), 89% (15%, 99%), and −6% (−231%, 66%) in those aged 0.5 to 9, 10 to 49, and 50+ years, respectively. Effectiveness for the live attenuated vaccine in those aged 2 to 49 years was only demonstrated if vaccination >7 rather than >14 days prior to illness onset was considered (61%∶ 12%, 82%). Inactivated non-adjuvanted pandemic vaccines offered significant protection against confirmed pandemic influenza-associated medical care visits in young adults.
Background. Influenza disproportionately impacts older adults while current vaccines have reduced effectiveness in the older population.Methods. We conducted a comprehensive evaluation of cellular and humoral immune responses of adults aged 50 years and older to the 2008–2009 seasonal trivalent inactivated influenza vaccine and assessed factors influencing vaccine response.Results. Vaccination increased hemagglutination inhibition and neutralizing antibody; however, 66.3% of subjects did not reach hemagglutination inhibition titers ≥ 40 for H1N1, compared with 22.5% for H3N2. Increasing age had a minor negative impact on antibody responses, whereas prevaccination titers were the best predictors of postvaccination antibody levels. Preexisting memory B cells declined with age, especially for H3N2. However, older adults still demonstrated a significant increase in antigen-specific IgG+ and IgA+ memory B cells postvaccination. Despite reduced frequency of preexisting memory B cells associated with advanced age, fold-rise in memory B cell frequency in subjects 60+ was comparable to subjects age 50–59.Conclusions. Older adults mounted statistically significant humoral and cell-mediated immune responses, but many failed to reach hemagglutination inhibition titers ≥40, especially for H1N1. Although age had a modest negative effect on vaccine responses, prevaccination titers were the best predictor of postvaccination antibody levels, irrespective of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.