This paper revises the precision of altimetric measurements made with signals of the Global Navigation Satellite Systems (GNSS) reflected (GNSS-R) off the sea surface. In particular, we investigate the performance of two different GNSS-R techniques, referred to here as the clean-replica and interferometric approaches. The former has been used in GNSS-R campaigns since the late 1990s, while the latter has only been tested once, in 2010, from an 18-m-high bridge in static conditions and estuary waters. In 2011, we conducted an airborne experiment over the Baltic Sea at 3-km altitude to test the interferometric concept in dynamic and rougher conditions. The campaign also flew a clean-replica GNSS-R instrument with the purpose of comparing both approaches. We have analyzed with detail the data sets to extract and validate models of the noise present in both techniques. After predicting the noise models and verifying these with aircraft data, we used them to obtain the precision of altimetric measurements and to extrapolate the performance analysis to spaceborne scenarios. The main conclusions are that the suggested noise model agrees with measured data and that the GNSS-R interferometric technique is at least two times better in precision than a technique based on using a clean replica of the publicly available GPS code. This represents a factor of at least four times finer along-track resolution. A precision of 22 cm in 65-km along-track averaging should be achievable using near-nadir interferometric GNSS-R observations from a low earth orbiter.
The launch of the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) satellite mission in November 2009 opened a new era of global passive monitoring at L-band (1.4-GHz band reserved for radio astronomy). The main objective of the mission is to measure soil moisture and sea surface salinity; the sole payload is the Microwave Imaging Radiometer using Aperture Synthesis. As part of comprehensive calibration and validation activities, several ground-based L-band radiometers, so-called ETH L-Band radiometers for soil moisture research (ELBARA-II), have been deployed. In this paper, we analyze a comprehensive set of measurements from one ELBARA-II deployment site in the northern boreal forest zone. The focus of this paper is in the detection of the evolution of soil frost (a relevant topic, e.g., for the study of carbon and methane cycles at high latitudes). We investigate the effects that soil freeze/thaw processes have on the L-band signature and present a simple modeling approach to analyze the relation between frost depth and the observed brightness temperature. Airborne observations are used to expand the analysis for different land cover types. Finally, the first SMOS observations from the same period are analyzed. Results show that soil freezing and thawing processes have an observable effect on the L-band signature of soil. Furthermore, the presented emission model is able to relate the observed dynamics in brightness temperature to the increase of soil frost.
ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched 2-Nov-2009, has been in orbit for over 6 years, and its Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) in two dimensions keeps working well. The calibration strategy remains overall as established after the commissioning phase, with a few improvements. The data for this whole period has been reprocessed with a new fully polarimetric version of the Level-1 processor which includes a refined calibration schema for the antenna losses. This reprocessing has allowed the assessment of an improved performance benchmark. An overview of the results and the progress achieved in both calibration and image reconstruction is presented in this contribution.Peer ReviewedPostprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.