Antibody responses are critical components of protective immune responses to many pathogens, but parameters determining which proteins are targeted remain unclear. Vaccination with individual MHC-II-restricted vaccinia virus (VACV, smallpox vaccine) epitopes revealed that CD4(+) T cell help to B cells was surprisingly nontransferable to other virion protein specificities. Many VACV CD4(+) T cell responses identified in an unbiased screen targeted antibody virion protein targets, consistent with deterministic linkage between specificities. We tested the deterministic linkage model by efficiently predicting new vaccinia MHC II epitopes (830% improved efficiency). Finally, we showed CD4(+) T cell help was limiting for neutralizing antibody development and protective immunity in vivo. In contrast to the standard model, these data indicate individual proteins are the unit of B cell-T cell recognition for a large virus. Therefore, MHC restriction is a key selective event for the antiviral antibody response and is probably important for vaccine development to large pathogens.
Understanding the specificity of cell-surface carbohydrates interaction with antibodies and receptors is important for the development of new therapeutics and high-sensitivity diagnostics. This approach is, however, limited to the availability of natural and truncated sequences of the oligosaccharides and the sensitivity of the assay system. Reported here is the synthesis of the cancer antigen Globo H hexasaccharide, an epitope found on the cell surface of breast, prostate, and ovarian cancers, and its truncated sequences by using the programmable one-pot synthesis strategy. The saccharides were then arrayed covalently on glass slides with different density and used for the fluorencense-based binding analysis of two monoclonal antibodies against Globo H and the serum from breast cancer patients, to define the specificity of these antibodies. It was shown that the terminal tetrasaccharide binds the monoclonal antibodies equally well as does the hexasaccharide and the fucose residue is required for effective binding. The serum binds both the defucosylated pentasaccharide and the fucosylated hexasaccharide without a significant difference, perhaps because of the polyclonal nature of the serum or the presence of diverse immune responses to different sugar epitopes at various stages. This method requires very small amounts of materials and is more effective and sensitive than the traditional ELISA method, and thus provides another platform to monitor the immune response to carbohydrate epitopes at different stages during differentiation, metastasis, or treatment.programmable one-pot synthesis ͉ glycoarray ͉ glycan epitope ͉ Globo H-truncated sequences T he cell-surface glycosphingolipid Globo H is a member of a family of antigenic carbohydrates that are highly expressed on a range of cancer cell lines, especially breast cancer cells (1-4). Furthermore, it has been established that the serum of breast cancer patients contains high levels of antibodies against the Globo H epitope, and this epitope is also targeted by the monoclonal antibodies MBr1 (5-7) and VK-9 (8). As a result, this hexasaccharide has been the focus of studies aimed at anticancer vaccine development (9-15). Many elegant syntheses of Globo H have been reported (11,(16)(17)(18)(19)(20)(21)(22)(23)(24), including one approach that uses the one-pot programmable oligosaccharide synthesis developed in our laboratory (25). Previously, it has been reported that certain truncated Globo H derivatives can still be effective in binding MBr1 and VK-9 antibodies, which could increase the efficiency of immunogen development for vaccine therapy (8,(26)(27)(28)(29)(30). We set out to further characterize the binding specificities of these and cancer patient antibodies by using carbohydrate microarray analysis.Carbohydrate microarrays allow for the direct characterization of carbohydrate-protein interactions. In addition, the attachment of sugars to surfaces can effectively mimic the presentation of these compounds on the cell membrane. A large factor which is present...
BackgroundExcessive gestational weight gain (GWG) leads to obstetric complications, maternal postpartum weight retention and an increased risk of offspring obesity. The GeliS study examines the effect of a lifestyle intervention during pregnancy on the proportion of women with excessive GWG and pregnancy and obstetric complications, as well as the long-term risk of maternal and infant obesity.MethodsThe GeliS study is a cluster-randomised multicentre controlled trial including 2286 women with a pre-pregnancy BMI between 18.5 and 40.0 kg/m2 recruited from gynaecological and midwifery practices prior to the end of the 12th week of gestation in five Bavarian regions. In the intervention regions, four lifestyle counselling sessions covering a balanced healthy diet, regular physical activity and self-monitoring of weight gain were performed by trained healthcare providers alongside routine pre- and postnatal practice visits. In the control regions, leaflets with general recommendations for a healthy lifestyle during pregnancy were provided.ResultsThe intervention did not result in a significant reduction of women showing excessive GWG (adjusted OR 0.95, 95% CI 0.66–1.38, p = 0.789), with 45.1% and 45.7% of women in the intervention and control groups, respectively, gaining weight above the Institute of Medicine recommendations. Gestational diabetes mellitus was diagnosed in 10.8% and 11.1% of women in the intervention and control groups, respectively (p = 0.622). Mean birth weight and length were slightly lower in the intervention group (3313 ± 536 g vs. 3363 ± 498 g, p = 0.020; 51.1 ± 2.7 cm vs. 51.6 ± 2.5 cm, p = 0.001).ConclusionIn the setting of routine prenatal care, lifestyle advice given by trained healthcare providers was not successful in limiting GWG and pregnancy complications. Nevertheless, the potential long-term effects of the intervention remain to be assessed.Trial registrationNCT01958307, ClinicalTrials.gov, retrospectively registered October 9, 2013.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1235-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.