Metformin is a widely used oral antidiabetic drug with good tolerability. Recent studies suggest that it also possesses adjuvant potent anticancer properties in a variety of tumors. Neuroendocrine tumors (NETs) of the gastro-entero-pancreatic system (GEP) comprise a heterogeneous group of tumors with increasing incidence and limited effective therapeutic options. Here we report the antiproliferative effects of metformin in neuroendocrine tumor cells in vitro. Treatment of human pancreatic BON1, bronchopulmonary NCI-H727, and midgut GOT1 neuroendocrine tumor cells with increasing concentrations of metformin (0.1-10 mM) dose-dependently suppressed cell viability and cell counts. Metformin induced AMPK phosphorylation in pancreatic BON1 and midgut GOT1 but suppressed AMPK activity in bronchopulmonary NCI-H727. Thus, AMPK-dependent and AMPK-independent properties may be operative in NETs of different origin. Metformin suppressed mTORC1 signaling in all three tumor cell types, evidenced by suppression of 4EBP1, pP70S6K, and S6 phosphorylation, and was associated with compensatory AKT activity. We observed induction of ERK phosphorylation in BON1 and NCI-H727 and inhibition of ERK in midgut GOT1 cells, while all three tumor cell types responded with induction of GSK3 phosphorylation. This suggests a central role for GSK3 in metformin-mediated signal transduction. Inhibition of cell proliferation by metformin was associated with apoptosis induction only in midgut GOT1, evidenced by increased subG0/1 fraction and PARP cleavage. These results suggest a potential role of metformin as a (adjuvant) therapeutic for patients with NETs.
There are no officially approved therapies for metastatic pheochromocytomas apart from ultratrace 131I-metaiodbenzylguanidine therapy, which is approved only in the United States. We have, therefore, investigated the antitumor potential of molecular-targeted approaches in murine pheochromocytoma cell lines [monocyte chemoattractant protein (MPC)/monocyte chemoattractant protein/3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], immortalized mouse chromaffin Sdhb−/− cells, three-dimensional pheochromocytoma tumor models (MPC/MTT spheroids), and human pheochromocytoma primary cultures. We identified the specific phosphatidylinositol-3-kinase α inhibitor BYL719 and the mammalian target of rapamycin inhibitor everolimus as the most effective combination in all models. Single treatment with clinically relevant doses of BYL719 and everolimus significantly decreased MPC/MTT and Sdhb−/− cell viability. A targeted combination of both inhibitors synergistically reduced MPC and Sdhb−/− cell viability and showed an additive effect on MTT cells. In MPC/MTT spheroids, treatment with clinically relevant doses of BYL719 alone or in combination with everolimus was highly effective, leading to a significant shrinkage or even a complete collapse of the spheroids. We confirmed the synergism of clinically relevant doses of BYL719 plus everolimus in human pheochromocytoma primary cultures of individual patient tumors with BYL719 attenuating everolimus-induced AKT activation. We have thus established a method to assess molecular-targeted therapies in human pheochromocytoma cultures and identified a highly effective combination therapy. Our data pave the way to customized combination therapy to target individual patient tumors.
Peptide receptor radionuclide therapy in advanced neuroendocrine tumors (NETs) demonstrates a limited objective response rate. The therapeutic efficacy might be further increased by peptide receptor chemoradionuclide therapy. In this preclinical study, we explored the effects of 5-fluorouracil plus the DNA methyltransferase inhibitor decitabine or the histone deacetylase inhibitor tacedinaline on NET cells in vitro. Methods: Human NET cell lines BON1 and QGP1 were treated with 5-fluorouracil alone or in combination with decitabine or tacedinaline, respectively. Radiosensitivity was tested in combination with γ-irradiation at doses of 0, 2, 4, or 6 Gy by colony formation assay. Somatostatin receptor type 2 (SSTR2) expression and 68 Ga-DOTATOC uptake by human NET cell lines were investigated by Western blot analysis and by a radioligand binding assay. Results: Treatment with 5-fluorouracil alone or in combination with decitabine or tacedinaline reduced tumor cell viability and induced apoptosis, enhanced radiosensitivity in BON1 and QGP1 cells, induced SSTR2 expression, and resulted in increased radioligand binding of 68 Ga-DOTATOC in NET cells. Conclusion: This preclinical study demonstrated that 5-fluorouracil alone or in combination with decitabine or tacedinaline caused radiosensitization of tumor cells, upregulation of SSTR2 expression in tumor cells, and increased radioligand binding of 68 Ga-DOTATOC to these tumor cells. These preclinical in vitro findings indicate that 5-fluorouracil in combination with epigenetic modifiers might be a putative strategy to improve the treatment efficacy of peptide receptor chemoradionuclide therapy in NET. Combination of 5-Fluorouracil with Epigenetic ModifiersInduces Radiosensitization, http://jnm.snmjournals.org/content/60/9/1240 This article and updated information are available at: http://jnm.snmjournals.org/site/subscriptions/online.xhtml Information about subscriptions to JNM can be found at: http://jnm.snmjournals.org/site/misc/permission.xhtml
Abstract. The heat shock protein (HSP) 90 chaperone machine involved in numerous oncogenic signaling pathways is overexpressed in cancer cells and is currently being evaluated for anticancer therapy. Neuroendocrine tumors (NETs) of the gastroenteropancreatic (GEP) system comprise a heterogeneous group of tumors with increasing incidence and poor prognosis. Here, we report the antiproliferative effects of the HSP90 inhibitors AUY922 and HSP990 in neuroendocrine tumor cells. Treatment of human pancreatic BON1, bronchopulmonary NCI-H727 and midgut carcinoid GOT1 neuroendocrine tumor cells with increasing concentrations of AUY922 and HSP990 dose-dependently suppressed cell viability. Significant effects on neuroendocrine cell viability were observed with inhibitor concentrations as low as 5 nM. Inhibition of cell viability was associated with the induction of apoptosis as demonstrated by an increase in sub-G1 events and PARP cleavage. HSP90 inhibition was associated with decreased neuroendocrine ErbB and IGF-I receptor expression, decreased Erk and Akt phosphorylation and the induction of HSP70 expression. These findings provide evidence that targeted inhibition of upregulated HSP90 activity could be useful for the treatment of aggressive neuroendocrine tumors resistant to conventional therapy.
Background/Aims: The tumor suppressor p53 is depleted in many tumor cells by the E3 ubiquitin ligase mouse double minute 2 homolog (MDM2) through MDM2/p53 interaction. A novel target for inhibiting p53 degradation and for causing reexpression of p53wild type is inhibition of MDM2. The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. Methods: Human neuroendocrine tumor cell lines from the pancreas (BON1), lung (NCI-H727), and midgut (GOT1) were incubated with the MDM2 inhibitor NVP-CGM097 (Novartis) at concentrations from 4 to 2,500 n
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.