Within a period of a few weeks toward the end of the Allerød Interstadial, the major Plinian eruption of the Laacher See volcano produced some 20 km3 of eruptiva, covering and preserving the late-glacial landscape in the German Central Rhineland over an area of more than 1000 km2. Correlation of terrestrial archives with the Greenland ice-core records and improved calibration of the radiocarbon timescale permit a precise, accurate age determination of the Laacher See event some 200 yr before the onset of the Younger Dryas cold episode. Carbonized trees and botanical macrofossils preserved by Laacher See Tephra permit detailed regional paleoenvironmental reconstruction and show that open woodland were typical for the cool and humid hemiboreal climatic conditions during the late Allerød. This woodland provided the habitat for a large variety of animal species, documented at both paleontological and Final Paleolithic archeological sites preserved below Laacher See deposits. Of special interest are numerous animal tracks intercalated in Middle Laacher See deposits at the south of the Neuwied Basin. This knowledge may help to evaluate possible supraregional impacts of this volcanic event on northern hemispheric environment and climate during the late Allerød.
The spread of early agriculture from the Mediterranean to central Europe is still poorly understood. The new subsistence reached western central Europe during the second half of the 6th millennium cal b.c. This paper presents a comparison of crop and weed species from 33 Bandkeramik sites from Austria and Germany and six Bulgarian Neolithic sites. The aim is to investigate whether the early cultivation system brought in from the eastern Mediterranean was adapted to European conditions in Bulgaria or further West. Some characteristics of the potential weeds are interpreted with respect to the cultivation systems and the origin of the species.
The annually laminated record of Lake Belau offers an exceptional opportunity to investigate with high temporal resolution Holocene environmental change, aspects of climate history and human impact on the landscape. A new chronology based on varve counts, 14C-datings and heavy metal history has been established, covering the last 9400 years. Based on multiple varve counting on two core sequences, the easily countable laminated section spans about 7850 varve years (modelled age range c. 9430 to 1630 cal. BP). Not all of the record is of the same quality but approximately 69% of the varves sequence is classified to be of high quality and only c. 5% of low quality. The new chronology suggests dates generally c. 260 years older than previously assumed for the laminated section of the record. The implications for the vegetation and land-use history of the region as well as revised datings for pollen stratigraphical events are discussed. Tephra analysis allowed the identification of several cryptotephra layers. New dates for volcanic eruptions are presented for the Lairg B event ( c. 6848 cal. BP, 2s range 6930–6713 cal. BP), the Hekla 4 event ( c. 4396 cal. BP, 2s range 4417–4266 cal. BP), and Hekla 3 eruption ( c. 3095 cal. BP, 2s range 3120–3068 cal. BP).
Broomcorn millet (Panicum miliaceum L.) is not one of the founder crops domesticated in Southwest Asia in the early Holocene, but was domesticated in northeast China by 6000 bc. in europe, millet was reported in Early Neolithic contexts formed by 6000 bc, but recent radiocarbon dating of a dozen 'early' grains cast doubt on these claims. Archaeobotanical evidence reveals that millet was common in Europe from the 2nd millennium bc, when major societal and economic transformations took place in the Bronze Age. We conducted an extensive programme of AMS-dating of charred broomcorn millet grains from 75 prehistoric sites in Europe. Our Bayesian model reveals that millet cultivation began in europe at the earliest during the sixteenth century bc, and spread rapidly during the fifteenth/ fourteenth centuries bc. Broomcorn millet succeeds in exceptionally wide range of growing conditions and completes its lifecycle in less than three summer months. Offering an additional harvest and thus surplus food/fodder, it likely was a transformative innovation in European prehistoric agriculture previously based mainly on (winter) cropping of wheat and barley. We provide a new, high-resolution chronological framework for this key agricultural development that likely contributed to far-reaching changes in lifestyle in late 2nd millennium bc europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.