Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites. MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
To report outcome (freedom from local progression [FFLP], overall survival [OS] and toxicity) after stereotactic, palliative or highly conformal fractionated (>12) radiotherapy (SBRT, Pall-RT, 3DCRT/IMRT) for adrenal metastases in a retrospective multicenter cohort within the framework of the German Society for Radiation Oncology (DEGRO).Adrenal metastases treated with SBRT (≤12 fractions, biologically effective dose [BED10] ≥ 50 Gy), 3DCRT/IMRT (>12 fractions, BED10 ≥ 50 Gy) or Pall-RT (BED10 < 50 Gy) were eligible for this analysis. In addition to unadjusted FFLP (Kaplan-Meier/log-rank), we calculated the competing-risk-adjusted local recurrence rate (CRA-LRR). Three hundred twenty-six patients with 366 metastases were included by 21 centers (median follow-up: 11.7 months). Treatment was SBRT, 3DCRT/IMRT and Pall-RT in 260, 27 and 79 cases, respectively. Most frequent primary tumors were non-small-cell lung cancer (NSCLC; 52.5%), SCLC (16.3%) and melanoma (6.7%).Unadjusted FFLP was higher after SBRT vs Pall-RT (P = .026) while numerical differences in CRA-LRR between groups did not reach statistical significance (1-year CRA-LRR: 13.8%, 17.4% and 27.7%). OS was longer after SBRT vs other groups (P < .05) and increased in patients with locally controlled metastases in a landmark analysis (P < .0001). Toxicity was mostly mild; notably, four cases of adrenal insufficiency occurred, two of which were likely caused by immunotherapy or tumor progression.Radiotherapy for adrenal metastases was associated with a mild toxicity profile in all groups and a favorable 1-year CRA-LRR after SBRT or 3DCRT/IMRT. One-year FFLP was associated with longer OS. Dose-response analyses for the dataset are underway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.