Cite this article as: Munster, V. J. et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature
The identification of a novel β coronavirus, nCoV, as the causative agent of severe respiratory illness in humans originating in Saudi Arabia, Qatar and Jordan has raised concerns about the possibility of a coronavirus pandemic similar to that of SARS-CoV. As a definitive treatment regimen has never been thoroughly evaluated for coronavirus infections, there is an urgent need to rapidly identify potential therapeutics to address future cases of nCoV. To determine an intervention strategy, the effect of interferon-α2b and ribavirin on nCoV isolate hCoV-EMC/2012 replication in Vero and LLC-MK2 cells was evaluated. hCoV-EMC/2012 was sensitive to both interferon-α2b and ribavirin alone in Vero and LLC-MK2 cells, but only at relatively high concentrations; however, when combined, lower concentrations of interferon-α2b and ribavirin achieved comparable endpoints. Thus, a combination of interferon-α2b and ribavirin, which are already commonly used in the clinic, may be useful for patient management in the event of future nCoV infections.
Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription-and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP 1,2 . This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ϳ500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. IMPORTANCEEbola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study Ebola viruses and develop countermeasures. Here we report the development of a novel reverse genetics-based system that allows the study of Ebola viruses without maximum-containment laboratories. We used this system to investigate the Ebola virus protein VP24, showing that, contrary to previous reports, it only modestly inhibits virus genome replication and transcription but is important for packaging of genomes into virus particles, which constitutes a previously unknown function of VP24 and a potential antiviral target. We further propose a comprehensive model for the function of VP24 in nucleocapsid assembly. Importantly, on the basis of this approach, it should easily be possible to develop similar experimental systems for other viruses that are currently restricted to maximum-containment laboratories. E bola virus is a negative-sense RNA virus (NSV) and the causative agent of a severe hemorrhagic fever in humans and nonhuman primates, with case fatality rates being up to 90% (1). The VP24 protein is unique to filoviruses and has no ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.