The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential.
Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.
In this study, we examined the prevalence, pathology, and epidemiology of tumors in free-ranging island foxes occurring on three islands in the California Channel Islands, USA. We found a remarkably high prevalence of ceruminous gland tumors in endangered foxes (Urocyon littoralis catalinae) occurring on Santa Catalina Island (SCA)—48.9% of the dead foxes examined from 2001–2008 had tumors in their ears, and tumors were found in 52.2% of randomly-selected mature (≥ 4 years) foxes captured in 2007–2008, representing one of the highest prevalences of tumors ever documented in a wildlife population. In contrast, no tumors were detected in foxes from San Nicolas Island or San Clemente Island, although ear mites (Otodectes cynotis), a predisposing factor for ceruminous gland tumors in dogs and cats, were highly prevalent on all three islands. On SCA, otitis externa secondary to ear mite infection was highly correlated with ceruminous gland hyperplasia (CGH), and tumors were significantly associated with the severity of CGH, ceruminous gland dysplasia, and age group (older foxes). We propose a conceptual model for the formation of ceruminous gland tumors in foxes on SCA that is based on persistent, ubiquitous infection with ear mites, and an innate, over exuberant inflammatory and hyperplastic response of SCA foxes to these mites. Foxes on SCA are now opportunistically treated with acaricides in an attempt to reduce mite infections and the morbidity and mortality associated with this highly prevalent tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.