HIGHLIGHTS d ASCs egress subcutaneous adipose tissue during dietary challenge d ASCs infiltrate muscle and differentiate into adipocytes, disturbing metabolism d Dietary-driven ASC trafficking relies on CXCL12 signals d Pioglitazone can prevent dietary-driven ASC infiltration in muscle
Context
Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes.
Objective
To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI).
Methods
AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line.
Results
During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes.
Conclusion
Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.