Background: Glucagon-like peptide 1 agonists differ in chemical structure, duration of action and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. Methods: We randomly assigned patients with type 2 diabetes and cardiovascular disease to the addition of once-weekly subcutaneous injection of albiglutide (30 mg to 50 mg) or matching placebo to standard care. We hypothesized that albiglutide would be noninferior to placebo for the primary outcome of first occurrence of cardiovascular death, myocardial infarction, or stroke. If noninferiority was confirmed by an upper limit of the 95% confidence interval for the hazard ratio of less than 1.30, closed-testing for superiority was prespecified. Findings: Overall, 9463 participants were followed for a median of 1.6 years. The primary composite outcome occurred in 338 of 4731 patients (7.1%; 4.6 events per 100 person-years) in the albiglutide group and in 428 of 4732 patients (9.0%; 5.9 events per 100 person-years) in the placebo group (hazard ratio, 0.78; 95% confidence interval [CI ], 0.68 to 0.90), indicating that albiglutide, was superior to placebo (P<0.0001 for noninferiority, P=0.0006 for superiority). The incidence of acute pancreatitis (albiglutide 10 patients and placebo 7 patients), pancreatic cancer (6 and 5), medullary thyroid carcinoma (0 and 0), and other serious adverse events did not differ significantly between the two groups. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. (Funded by GlaxoSmithKline; Harmony Outcomes ClinicalTrials.gov number, NCT02465515.) noninferiority; P = 0.06 for superiority). There seems to be variation in the results of existing trials with GLP-1 receptor agonists, which if correct, might reflect drug structure or duration of action, patients studied, duration of follow-up or other factors.
OBJECTIVEA strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases.RESEARCH DESIGN AND METHODSWe investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments.RESULTSWe found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes.CONCLUSIONSThis study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes.
Aims/hypothesis: The aim of this study was to investigate the effects of liver X receptor (LXR) activation on lipid metabolism and insulin action in human skeletal muscle cells prepared from control subjects and from patients with type 2 diabetes. Subjects and methods: Cultured myotubes were obtained from muscle biopsies of 11 lean, healthy control subjects and ten patients with type 2 diabetes. The mRNA levels of LXR isoforms and lipogenic genes were estimated by RT-quantitative PCR, and the effects of LXR agonists on insulin action were evaluated by assays of protein kinase B serine 473 phosphorylation and glycogen synthesis. Results: Both LXRα and LXRβ were expressed in human skeletal muscle and adipose tissue and there was no difference in their mRNA abundance in tissues from patients with type 2 diabetes compared with control subjects. In cultured muscle cells, LXR activation by T0901317 strongly increased expression of the genes encoding lipogenic enzymes, including sterol regulatory element binding protein 1c, fatty acid synthase and stearoyl-CoA desaturase 1, and also promoted triglyceride accumulation in the presence of a high glucose concentration. Importantly, these effects on lipid metabolism did not affect protein kinase B activation by insulin. Furthermore, LXR agonists did not modify insulin action in muscle cells from patients with type 2 diabetes. Conclusions/interpretation: These data suggest that LXR agonists may lead to increased utilisation of lipids and glucose in muscle cells without affecting the mechanism of action of insulin. However, the long-term consequences of triglyceride accumulation in muscle should be evaluated before the development of effective LXR-based therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.