Background: The Rwanda Human Resources for Health Program (HRH Program) is a 7-year (2012-2019) health professional training initiative led by the Government of Rwanda with the goals of training a large, diverse, and competent health workforce and strengthening the capacity of academic institutions in Rwanda. Methods: The data for this organizational case study was collected through official reports from the Rwanda Ministry of Health (MoH) and 22 participating US academic institutions, databases from the MoH and the College of Medicine and Health Sciences (CMHS) in Rwanda, and surveys completed by the co-authors. Results: In the first 5 years of the HRH Program, a consortium of US academic institutions has deployed an average of 99 visiting faculty per year to support 22 training programs, which are on track to graduate almost 4600 students by 2019. The HRH Program has also built capacity within the CMHS by promoting the recruitment of Rwandan faculty and the establishment of additional partnerships and collaborations with the US academic institutions. Conclusion: The milestones achieved by the HRH Program have been substantial although some challenges persist. These challenges include adequately supporting the visiting faculty; pairing them with Rwandan faculty (twinning); ensuring strong communication and coordination among stakeholders; addressing mismatches in priorities between donors and implementers; the execution of a sustainability strategy; and the decision by one of the donors not to renew funding beyond March 2017. Over the next 2 academic years, it is critical for the sustainability of the 22 training programs supported by the HRH Program that the health-related Schools at the CMHS significantly scale up recruitment of new Rwandan faculty. The HRH Program can serve as a model for other training initiatives implemented in countries affected by a severe shortage of health professionals.
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug . G114-particles (~950nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic ‘Trojan Horse’ therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.