In addition to the classical neurotransmitters, acetylcholine and noradrenaline, a wide number of peptides with neurotransmitter activity have been identified in the past few years. Among them, the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) appear to act as mediators of nonadrenergic, noncholinergic (NANC) excitatory neurotransmission. Tachykinins interact with specific membrane proteins, belonging to the family of G protein-coupling cell membrane receptors. Until now, three tachykinin receptors termed NK1 (NK1R), NK2 (NK2R) and NK3 (NK3R) have been cloned in different species. A large amount of reports suggests that these peptides are involved in nociception and neuroimmunomodulation, and in the development of different diseases such as bronchial asthma, inflammatory bowel syndrome and psychiatric disorders. Tachykinin receptor antagonists are therefore promising, therapeutically relevant agents. However, and in spite of extensive research, the obtention of selective antagonists of tachykinin receptors have revealed very difficult. An understanding of how ligands interact with their receptors is essential to permit a rational design of compounds acting selectively at the tachykinin receptor level. The major aim of the present article is to review the structure-activity data that exist for tachykinins and their receptors, with the purpose of getting insight into basic structural requirements that determine ligand/receptor interaction.
Water molecules confined inside narrow pores are of great importance in understanding the structure, stability, and function of water channels. Here we report that besides the H-bonding water that structures the pore, the permanent presence of a significant, fast-moving fraction of incompletely H-bonded water molecules inside the pore should control the free entry and exit of water. This is achieved by means of complementary DSC and solid-state NMR studies. We also present compelling evidence from X-ray diffraction data that the cluster formed by six water molecules in the most stable cage-like structure is sufficiently hydrophobic to be stably adsorbed in a nonpolar environment.
1 Studies were undertaken to determine the nature of the receptors mediating contractile effects of tachykinins in the uteri of nonpregnant women, and to analyse the expression of preprotachykinins (PPT), tachykinin receptors and the cell-surface peptidase, neprilysin (NEP), in the myometrium from pregnant and nonpregnant women. 2 The neurokinin B (NKB) precursor PPT-B was expressed in higher levels in the myometrium from nonpregnant than from pregnant women. Faint expression of PPT-A mRNA was detectable in the myometrium from nonpregnant but not pregnant women. PPT-C, the gene encoding the novel tachykinin peptide hemokinin-1 (HK-1), was present in trace amounts in the uteri from both pregnant and nonpregnant women. 3 Tachykinin NK 2 receptors were more strongly expressed in tissues from nonpregnant than from pregnant women. NK 1 receptor mRNA was present in low levels in tissues from both pregnant and nonpregnant women. A low abundance transcript corresponding to the NK 3 receptor was present only in tissues from nonpregnant women. 4 The mRNA expression of the tachykinin-degrading enzyme NEP was lower in tissues from nonpregnant than from pregnant women. 5 Substance P (SP), neurokinin A (NKA) and NKB, in the presence of the peptidase inhibitors thiorphan, captopril and bestatin, produced contractions of myometrium from nonpregnant women. The order of potency was NKAbSPXNKB. The potency of NKA was unchanged in the absence of peptidase inhibitors. Nle 10 ]NKA(4 -10). 8 These data are consistent with a role of tachykinins in the regulation of human uterine function, and reinforce the importance of NK 2 receptors in the regulation of myometrial contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.