The dendritic issue in aqueous zinc‐ion batteries (ZBs) using neutral/mild electrolytes has remained an intensive controversy for a long time: some researchers assert that dendrites severely exist while others claim great cycling stability without any protection. This issue is clarified by investigating charge/discharge‐condition‐dependent formation of Zn dendrites. Lifespan degradation (120 to 1.2 h) and voltage hysteresis deterioration (134 to 380 mV) are observed with increased current densities due to the formation of Zn dendrites (edge size: 0.69–4.37 µm). In addition, the capacity is also found to remarkably affect the appearance of the dendrites as well. Therefore, at small current densities or loading mass, Zn dendrites might not be an issue, while the large conditions may rapidly ruin batteries. Based on this discovery, a first‐in‐class electrohealing methodology is developed to eliminate already‐formed dendrites, generating extremely prolonged lifespans by 410% at 7.5 mA cm–2 and 516% at 10 mA cm–2. Morphological analysis reveals that vertically aligned Zn dendrites with sharp tips gradually become passivated and finally generate a smooth surface. This developed electrohealing strategy may promote research on metal dendrites in various batteries evolving from passive prevention to active elimination, rescuing in‐service batteries in situ to achieve elongated lifetime.
In this paper, we propose the design of a family of hydrogel electrolytes that featuring freezing resistance, flexibility, safety, superior ionic conductivity and long-term stability to realize anti-freezing flexible aqueous batteries.
An ionic‐liquid‐based Zn salt electrolyte is demonstrated to be an effective route to solve both the side‐reaction of the hydrogen evolution reaction (HER) and Zn‐dendrite growth in Zn‐ion batteries. The developed electrolyte enables hydrogen‐free, dendrite‐free Zn plating/stripping over 1500 h cycle (3000 cycles) at 2 mA cm–2 with nearly 100% coulombic efficiency. Meanwhile, the oxygen‐induced corrosion and passivation are also effectively suppressed. These features bring Zn‐ion batteries an unprecedented long lifespan over 40 000 cycles at 4 A g–1 and high voltage of 2.05 V with a cobalt hexacyanoferrate cathode. Furthermore, a 28.6 µm thick solid polymer electrolyte of a poly(vinylidene fluoride‐hexafluoropropylene) film filled with poly(ethylene oxide)/ionic‐liquid‐based Zn salt is constructed to build an all‐solid‐state Zn‐ion battery. The all‐solid‐state Zn‐ion batteries show excellent cycling performance of 30 000 cycles at 2 A g–1 at room temperature and withstand high temperature up to 70 °C, low temperature to –20 °C, as well as abuse test of bending deformation up to 150° for 100 cycles and eight times cutting. This is the first demonstration of an all‐solid‐state Zn‐ion battery based on a newly developed electrolyte, which meanwhile solves the deep‐seated hydrogen evolution and dendrite growth problem in traditional Zn‐ion batteries.
The applications of organotin halide perovskites are limited because of their chemical instability under ambient conditions. Upon air exposure, Sn2+ can be rapidly oxidized to Sn4+, causing a large variation in the electronic properties. Here, the role of organic cations in degradation is investigated by comparing methylammonium tin iodide (MASnI3) and formamidinium tin iodide (FASnI3). Through chemical analyses and theoretical calculations, it is found that the organic cation strongly influences the oxidation of Sn2+ and the binding of H2O molecules to the perovskite lattice. On the one hand, Sn2+ can be easily oxidized to Sn4+ in MASnI3, and replacing MA with FA reduces the extent of Sn oxidation; on the other hand, FA forms a stronger hydrogen bond with H2O than does MA, leading to partial expansion of the perovskite network. The two processes compete in determining the material's conductivity. It is noted that the oxidation is a difficult process to prevent, while the water effect can be largely suppressed by reducing the moisture level. As a result, FASnI3‐based conductors and photovoltaic cells exhibit much better reproducibility as compared to MASnI3‐based devices. This study sheds light on the development of stable Pb‐free perovskite optoelectronic devices through new material design.
Current aqueous Zn batteries (ZBs) seriously suffer from dendrite issues caused by rough electrode surfaces. Despite significant efforts in prolonging lifespan of these batteries, little effort has been devoted to dendrite elimination in commercial‐grade cathode loading mass. Instead, demonstrations have only been done at the laboratory level (≤2 mg cm−2). Additionally, new dilemmas regarding change of the proton‐storage behavior and interface pulverization have emerged in turn. Herein, hydrogen‐substituted graphdiyne (HsGDY), with sub‐ångström level ion tunnels and robust chemical stability, is designed as an artificial interface layer to address these issues. This strategy prolongs the symmetric cell lifespan to >2400 h (100 days), which is 37 times larger than without protection (63 h). The simulation of dual fields reveals that HsGDY can redistribute the Zn2+ concentration field by spatially forcing Zn2+ to deviate from the irregular electric field. During practical use, the as‐assembled full batteries deliver a long lifespan 50 000 cycles and remain stable even at a commercial‐grade cathode loading mass of up to 22.95 mg cm−2. This HsGDY‐protection methodology represents great progress in Zn dendrite protection and demonstrates enormous potential in metal batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.