Long non-coding RNAs (lncRNAs) are emerging as key molecules in human cancer. Highly upregulated in liver cancer (HULC), an lncRNA, has recently been revealed to be involved in hepatocellular carcinoma development and progression. It remains unclear, however, whether HULC plays an oncogenic role in human gastric cancer (GC). In the present study, we demonstrated that HULC was significantly overexpressed in GC cell lines and GC tissues compared with normal controls, and this overexpression was correlated with lymph node metastasis, distant metastasis and advanced tumor node metastasis stages. In addition, a receiver operating characteristic (ROC) curve was constructed to evaluate the diagnostic values and the area under the ROC curve of HULC was up to 0.769. To uncover its functional importance, gain- and loss-of-function studies were performed to evaluate the effect of HULC on cell proliferation, apoptosis and invasion in vitro. Overexpression of HULC promoted proliferation and invasion and inhibited cell apoptosis in SGC7901 cells, while knockdown of HULC in SGC7901 cells showed the opposite effect. Mechanistically, we discovered that overexpression of HULC could induce patterns of autophagy in SGC7901 cells; more importantly, autophagy inhibition increased overexpression of HULC cell apoptosis. We also determined that silencing of HULC effectively reversed the epithelial-to-mesenchymal transition (EMT) phenotype. In summary, our results suggest that HULC may play an important role in the growth and tumorigenesis of human GC, which provides us with a new biomarker in GC and perhaps a potential target for GC prevention, diagnosis and therapeutic treatment.
BackgroundProgrammed death ligand-1 (PD-L1) has been identified as a factor associated with poor prognosis in a range of cancers, and was reported to be mainly induced by PTEN loss in gliomas. However, the clinical effect of PD-L1 and its regulation by PTEN has not yet been determined in colorectal cancer (CRC). In the present study, we verified the regulation of PTEN on PD-L1 and further determined the effect of PTEN on the correlation between PD-L1 expression and clinical parameters in CRC.Methods/ResultsRNA interference approach was used to down-regulate PTEN expression in SW480, SW620 and HCT116 cells. It was showed that PD-L1 protein, but not mRNA, was significantly increased in cells transfected with siRNA PTEN compared with the negative control. Moreover, the capacity of PTEN to regulate PD-L1 expression was not obviously affected by IFN-γ, the main inducer of PD-L1. Tissue microarray immunohistochemistry was used to detect PD-L1 and PTEN in 404 CRC patient samples. Overexpression of PD-L1 was significantly correlated with distant metastasis (P<0.001), TNM stage (P<0.01), metastatic progression (P<0.01) and PTEN expression (P<0.001). Univariate analysis revealed that patients with high PD-L1 expression had a poor overall survival (P<0.001). However, multivariate analysis did not support PD-L1 as an independent prognostic factor (P = 0.548). Univariate (P<0.001) and multivariate survival (P<0.001) analysis of 310 located CRC patients revealed that high level of PD-L1 expression was associated with increased risks of metastatic progression. Furthermore, the clinical effect of PD-L1 on CRC was not statistically significant in a subset of 39 patients with no PTEN expression (distant metastasis: P = 0.102; TNM stage: P = 0.634, overall survival: P = 0.482).ConclusionsPD-L1 can be used to identify CRC patients with high risk of metastasis and poor prognosis. This clinical manifestation may be partly associated with PTEN expression.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide, especially in Western countries. Although chemotherapy is used as an adjuvant or as a palliative treatment, drug resistance poses a great challenge. This study intended to identify biomarkers as predictive factors for chemotherapy.Patients and methods: By microarray analysis, we studied miRNAs expression profiles in CRC patient, comparing chemoresistant and chemosensitive groups. The miRNAs of interest were validated and the impact on clinical outcomes was assessed in a cohort of 295 patients. To search for potential targets of these miRNAs, tissue samples were subject to in situ hybridization and immunohistochemistry analysis. Colorectal adenocarcinoma cells were also used for in vitro experimentation, where cellular invasiveness and drug resistance were examined in miRNA-transfected cells.Results: The expression level of miRNA-17-5p was found increased in chemoresistant patients. Significantly higher expression levels of miR-17-5p were found in CRC patients with distant metastases and higher clinical stages. Kaplan-Meier analysis showed that CRC patients with higher levels of miR-17-5p had reduced survival, especially in patients who had previously received chemotherapy. Overexpression of miR-17-5p promoted COLO205 cell invasiveness. We found that PTEN was a target of miR-17-5p in the colon cancer cells, and their context-specific interactions were responsible for multiple drug-resistance. Chemotherapy was found to increase the expression levels of miR-17-5p, which further repressed PTEN levels, contributing to the development of chemo-resistance.Conclusions: MiR-17-5p is a predictive factor for chemotherapy response and a prognostic factor for overall survival in CRC, which is due to its regulation of PTEN expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.