The RV FDG accumulation corrected for the partial volume effect was significantly increased in accordance with the severity of the RV pressure overload (i.e., the RV peak-systolic wall stress) in patients with pulmonary hypertension. Furthermore, the corrected RV FDG accumulation was decreased after the treatment with epoprostenol in accordance with the degree of reduction in the pulmonary vascular resistance and RV peak-systolic wall stress.
We have previously demonstrated that long-term inhibition of Rho-kinase ameliorates pulmonary arterial hypertension (PAH) in animal models. In the present study, we examined acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, as a more feasible option to locally deliver the drug for PAH. We examined 15 patients with PAH (13 women and 2 men, 45 +/- 4 years old), including idiopathic PAH (n = 5), PAH associated with connective tissue disease (n = 6), PAH with congenital heart disease (n = 3), and portal PAH (n = 1). In those patients, we performed right heart catheterization with a Swan-Ganz catheter in the two protocols with inhalation of nitric oxide (NO) (40 ppm, 10 min) and fasudil (30 mg, 10 min) with a sufficient interval (>30 min). Both NO and fasudil inhalation significantly reduced mean pulmonary arterial pressure (PAP) (NO: P < 0.01, fasudil: P < 0.05) and tended to decrease pulmonary vascular resistance (NO: P = 0.07, fasudil: P = 0.1), but did not affect cardiac index. The ratio of pulmonary to systemic vascular resistance was significantly reduced both in NO and fasudil inhalation (NO: P < 0.01, fasudil: P < 0.05), indicating that both NO and fasudil inhalation selectively affect lung tissues. Interestingly, there was no correlation in the vasodilator effects between NO and fasudil, and a positive correlation with serum levels of high-sensitivity C-reactive protein was noted for fasudil but not for NO. These results suggest that inhalation of fasudil is as effective as NO in patients with PAH, possibly through different mechanisms.
Aims Mobilization of stem cells/progenitors is regulated by the interaction between stromal cellderived factor-1 (SDF-1) and its ligand, CXC chemokine receptor 4 (CXCR4). Statins have been suggested to ameliorate pulmonary arterial hypertension (PAH); however, the mechanisms involved, especially their effects on progenitors, are largely unknown. Therefore, we examined whether pravastatin ameliorates hypoxia-induced PAH in mice, and if so, which type of progenitors and what mechanism(s) are involved. Methods and results Chronic hypoxia (10% O 2 for 5 weeks) increased the plasma levels of SDF-1 and mobilization of CXCR4 þ /vascular endothelial growth factor receptor (VEGFR)2 þ /c-kit þ cells from bone marrow (BM) to pulmonary artery adventitia in Balb/c mice in vivo, both of which were significantly suppressed by simultaneous oral treatment with pravastatin (2 mg/kg/day). Furthermore, in vitro experiments demonstrated that hypoxia enhances differentiation of VEGFR2 þ /c-kit þ cells into a-smooth muscle actin þ cells. Importantly, pravastatin ameliorated hypoxia-induced PAH associated with a decrease in the number of BM-derived progenitors accumulating in the pulmonary artery adventitia. The expression of intercellular adhesion molecule-1 (ICAM-1) and its ligand, CD18 (b2-integrin), were enhanced by hypoxia and were again suppressed by pravastatin. Conclusions These results suggest that pravastatin ameliorates hypoxia-induced PAH through suppression of SDF-1/CXCR4 and ICAM-1/CD18 pathways with a resultant reduction in the mobilization and homing of BM-derived progenitor cells.
Diastolic heart failure (DHF) is a major cardiovascular disorder with poor prognosis; however, its molecular mechanism still remains to be fully elucidated. We have previously demonstrated the important roles of Rho-kinase pathway in the molecular mechanisms of cardiovascular fibrosis/hypertrophy and oxidative stress, but not examined in the development of heart failure. Therefore, we examined in this study whether Rho-kinase pathway is also involved in the pathogenesis of DHF in Dahl salt-sensitive rats, an established animal model of DHF. They were maintained with or without fasudil, a Rho-kinase inhibitor (30 or 100 mg/kg/day, PO) for 10 weeks. Untreated DHF group exhibited overt heart failure associated with diastolic dysfunction but with preserved systolic function, characterized by increased myocardial stiffness, cardiomyocyte hypertrophy, and enhanced cardiac fibrosis and superoxide production. Fasudil treatment significantly ameliorated those DHF-related myocardial changes. Western blot analysis showed that cardiac Rho-kinase activity was significantly increased in the untreated DHF group and was dose-dependently inhibited by fasudil. Importantly, there was a significant correlation between the extent of myocardial stiffness and that of cardiac Rho-kinase activity. These results indicate that Rho-kinase pathway plays an important role in the pathogenesis of DHF and thus could be an important therapeutic target for the disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.