Jasmonic acid (JA) and its precursors and dervatives, referred as jasmonates (JAs) are important molecules in the regulation of many physiological processes in plant growth and development, and especially the mediation of plant responses to biotic and abiotic stresses. JAs biosynthesis, perception, transport, signal transduction and action have been extensively investigated. In this review, we will discuss the initiation of JA signaling with a focus on environmental signal perception and transduction, JA biosynthesis and metabolism, transport of signaling molecules (local transmission, vascular bundle transmission, and airborne transportation), and biological function (JA signal receptors, regulated transcription factors, and biological processes involved).
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has passed national acceptance and finished one pilot cycle of ‘Shared-Risk’ observations. It will start formal operation soon. In this context, this paper describes testing results of key fundamental parameters for FAST, aiming to provide basic support for observation and data reduction of FAST for scientific researchers. The 19-beam receiver covering 1.05–1.45 GHz was utilized for most of these observations. The fluctuation in electronic gain of the system is better than 1% over 3.5 hours, enabling enough stability for observations. Pointing accuracy, aperture efficiency and system temperature are three key parameters for FAST. The measured standard deviation of pointing accuracy is 7.9″, which satisfies the initial design of FAST. When zenith angle is less than 26.4°, the aperture efficiency and system temperature around 1.4 GHz are ∼0.63 and less than 24 K for central beam, respectively. The sensitivity and stability of the 19-beam backend are confirmed to satisfy expectation by spectral Hi observations toward NGC 672 and polarization observations toward 3C 286. The performance allows FAST to take sensitive observations for various scientific goals, from studies of pulsars to galaxy evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.